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COMMON FIXED POINT THEOREMS FOR JS-

CONTRACTIONS

AHMED AL-RAWASHDEH, JAMSHAID AHMAD

Abstract. The aim of this article is to study JS-contractions and to establish

some new common fixed point theorems for these contractions in the setup of

complete metric spaces. Presented theorems are generalizations of recent fixed
point theorems due to Hussain et al. [Fixed Point Theory and Applications

(2015) 2015:185]. An example is also given to support our generalized result.

1. Introduction and Preliminaries

Over the past two decades, fixed point theory become a distinguished mathe-
matical theory which is a pretty mixture of analysis, topology, and geometry. It
is an interdisciplinary theory in which the existence of linear and nonlinear prob-
lems is frequently transformed into fixed point problems, for example, the existence
of solutions to partial differential equations, the existence of solutions to integral
equations, and the existence of periodic orbits in dynamical systems. This makes
fixed point theory a contemporary area and a subject of active scientific research,
constantly evolving and growing in a perpetual progress.

The Banach Contraction Principle is one of the cornerstones in the development
of Nonlinear Analysis, in general, and metric fixed point theory, in particular. The
method of successive approximation introduced by Liouville in 1837 and systemati-
cally developed by Picard in 1890 culminated in formulation of Banach Contraction
Principle by Polish Mathematician Stefan Banach in 1922. This theorem provides
an illustration of the unifying power of functional analytic methods and usefulness
of fixed point theory in analysis. Extensions of the Banach contraction principle
have been obtained either by generalizing the domain of the mapping or by extend-
ing the contractive condition on the mappings see [1, 2, 4, 5, 6, 7, 9, 10, 12, 13, 14,
15, 16, 18, 19, 20, 21].

Very recently, Jleli and Samet [11] introduced a new type of contraction and
established some new fixed point theorems for such contraction in the context of
generalized metric spaces.

Definition 1.1. Let ψ : [0,∞)→ [1,∞) be a function satisfying:

(ψ1) ψ is nondecreasing;
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(ψ2) for each sequence {αn} ⊆ R+, limn→∞ ψ(αn) = 1 if and only if limn→∞(αn) =
0;

(ψ3) there exists 0 < k < 1 and l ∈ (0,∞] such that lima→0+
ψ(α)−1
αk = l.

Let Θ denote the family of functions ψ satisfying the above assertions.

Definition 1.2. [11] A mapping T : X → X is said to be JS-contraction if there
exists the above function ψ and a constant α ∈ [0, 1) such that

d(Tx, Ty) 6= 0 =⇒ ψ(d(Tx, Ty)) ≤ [ψ(d(x, y))]α (1.1)

for all x, y ∈ X.

Using the above JS-Contraction, they gave the following result as a generalization
of Banach Contraction Principle.

Theorem 1.3. [11] Let (X, d) be a complete metric space and let T : X → X be a
JS-contraction. Then T has a unique fixed point.

Hussain et al. [21] modified and extended the above family Θ of functions ψ :
[0,∞) → [1,∞) and proved the following fixed point theorem for ψ-contractive
condition in the setting of complete metric spaces.

(ψ
′

1) ψ is nondecreasing and ψ(t) = 1 if and only if t = 0;
(ψ4) ψ(a+ b) ≤ ψ(a) + ψ(b) for all a, b > 0.

To be consistent with Hussain et al. [21], we denote by Ψ the set of all functions

ψ : [0,∞)→ [1,∞) satisfying the conditions (ψ
′

1 − ψ4).

Theorem 1.4. [8] Let (X, d) be a complete metric space and T : X → X be a
self-mapping. If there exists a function ψ ∈ Ψ and positive real numbers k1, k2, k3
and k4 with 0 ≤ k1 + k2 + k3 + 2k4 < 1 such that

ψ(d(Tx, Ty)) ≤ [ψ(d(x, y))]k1 · [ψ(d(x, Tx))]k2 · [ψ(d(y, Ty))]k3 · [ψ((d(x, Ty) + d(y, Tx))]k4

(1.2)
for all x, y ∈ X, then T has a unique fixed point.

This result is not only a generalization of the Banach Contraction Principle but
also Kannan fixed point theorem and Chatterjea Fixed Point Theorem. In this
paper, we prove common fixed point results for a pair of self mappings satisfying a
generalized ψ-contractive condition in the framework of complete metric spaces.

2. Main Results

Very recently, Ahmad et al. [3] defined the family M(S, T ) of all functions
a : X ×X → [0, 1) with following assertions

a(TSx, y) ≤ a(x, y) and a(x, STy) ≤ a(x, y)

and the family N(S, T ) of all functions β : X → [0, 1) such that for all x, y ∈ X
with

β(TSx) ≤ β(x)

on a metric space (X, d) and for two self mappings S, T : X → X. In this section, we
prove a common fixed point theorem for self mappings regarding ψ−contractions.
The following proposition plays an important role in the proofs of our main theo-
rems.
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Proposition 2.1. [3]Let (X, d) be a metric space and S, T : X → X be self-
mappings. Let x0 ∈ X, we define the sequence {xn} by x2n+1 = Sx2n, x2n+2 =
Tx2n+1 for all integers n ≥ 0.

If a ∈ M(S, T ), then a(x2n, y) ≤ a(x0, y) and a(x, x2n+1) ≤ a(x, x1) for all
x, y ∈ X and integers n ≥ 0.

Now we state our main theorem.

Theorem 2.2. Let (X, d) be a complete metric space and let S, T : X → X be
self-mappings. If there exists mappings a1, a2, a3, a4 ∈ M(S, T ) such that for all
x, y ∈ X:

(a) a1(x, y) + a2(x, y) + a3(x, y) + 2a4(x, y) < 1
(b)

ψ(d(Sx, Ty))

≤ [ψ(d(x, y))]
a1(x,y) · [ψ(d(x, Sx))]

a2(x,y) · [ψ(d(y, Ty))]
a3(x,y) · [ψ(d(x, Ty)) + d(y, Sx))]

a4(x,y)

where ψ ∈ Ψ, then S and T have a unique common fixed point.

Proof. Let x0 ∈ X, we define the sequence {xn} by

x2n+1 = Sx2n and x2n+2 = Tx2n+1

for all integers n ≥ 0. From Proposition 2.1, for all integers n ≥ 0, we have

1 < ψ(d(x2n, x2n+1)) = ψ(d(Tx2n−1, Sx2n)) = ψ(d(Sx2n, Tx2n−1))

≤ [ψ(d(x2n, x2n−1))]a1(x2n,x2n−1) · [ψ(d(x2n, Sx2n))]a2(x2n,x2n−1)

[ψ(d(x2n−1, Tx2n−1))]a3(x2n,x2n−1) ·
·[ψ(d(x2n, Tx2n−1) + d(x2n−1, Sx2n)]a4(x2n,x2n−1)

= [ψ(d(x2n, x2n−1))]a1(x2n,x2n−1) · [ψ(d(x2n, x2n+1))]a2(x2n,x2n−1)

·[ψ(d(x2n−1, x2n))]a3(x2n,x2n−1) · [ψ(d(x2n−1, x2n+1))]a4(x2n,x2n−1)

≤ [ψ(d(x2n, x2n−1))]a1(x2n,x2n−1) · [ψ(d(x2n, x2n+1))]a2(x2n,x2n−1)

·[ψ(d(x2n−1, x2n))]a3(x2n,x2n−1) · [ψ(d(x2n−1, x2n) + d(x2n, x2n+1))]a4(x2n,x2n−1)

≤ [ψ(d(x2n, x2n−1))]a1(x0,x2n−1) · [ψ((d(x2n, x2n+1))]a2(x0,x2n−1)

[ψ(d(x2n−1, x2n))]a3(x0,x2n−1) · [ψ(d(x2n−1, x2n) + d(x2n, x2n+1))]a4(x0,x2n−1)

≤ [ψ(d(x2n, x2n−1))]a1(x0,x1) · [ψ(d(x2n, x2n+1))]a2(x0,x1)

·[ψ(d(x2n−1, x2n))]a3(x0,x1) · [ψ(d(x2n−1, x2n) + d(x2n, x2n+1))a4(x0,x1)

≤ [ψ(d(x2n, x2n−1))]a1(x0,x1) · [ψ(d(x2n, x2n+1))]a2(x0,x1)

·[ψ(d(x2n−1, x2n))]a3(x0,x1) · [ψ(d(x2n−1, x2n)]a4(x0,x1) · [ψ(d(x2n, x2n+1))]a4(x0,x1)

= [ψ(d(x2n, x2n−1))]a1(x0,x1)+a3(x0,x1)+a4(x0,x1) · [ψ(d(x2n, x2n+1))]a2(x0,x1)+a4(x0,x1).

Thus

ψ(d(x2n, x2n+1)) ≤ [ψ(d(x2n, x2n−1))]
a1(x0,x1)+a3(x0,x1)+a4(x0,x1)

1−a2(x0,x1)−a4(x0,x1) . (2.1)
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Similarly, we have

1 < ψ(d(x2n+1, x2n+2)) = ψ(d(Sx2n, Tx2n+1))

≤ [ψ(d(x2n, x2n+1))]a1(x2n,x2n+1) · [ψ(d(x2n, Sx2n))]a2(x2n,x2n+1)

[ψ(d(x2n+1, Tx2n+1))]a3(x2n,x2n+1) · [ψ(d(x2n, Tx2n+1) + d(x2n+1, Sx2n))]a4(x2n,x2n+1)

= [ψ(d(x2n, x2n+1))]a1(x2n,x2n+1) · [ψ(d(x2n, x2n+1))]a2(x2n,x2n+1)

·[ψ(d(x2n+1, x2n+2))]a3(x2n,x2n+1) · [ψ(d(x2n, x2n+2))]a4(x2n,x2n+1)

≤ [ψ(d(x2n, x2n+1))]a1(x2n,x2n+1) · [ψ(d(x2n, x2n+1))]a2(x2n,x2n+1)

·[ψ(d(x2n+1, x2n+2))]a3(x2n,x2n+1) · [ψ(d(x2n, x2n+1) + d(x2n+1, x2n+2))]a4(x2n,x2n+1)

≤ [ψ(d(x2n, x2n+1))]a1(x0,x2n+1) · [ψ(d(x2n, x2n+1))]a2(x0,x2n+1)

[ψ(d(x2n+1, x2n+2))]a3(x0,x2n+1) ·
[ψ((d(x2n, x2n+1) + d(x2n+1, x2n+2))]a4(x0,x2n+1)

≤ [ψ(d(x2n, x2n+1))]a1(x0,x1).[ψ(d(x2n, x2n+1))]a2(x0,x1)

[ψ(d(x2n+1, x2n+2))]a3(x0,x1) · [ψ((d(x2n, x2n+1) + d(x2n+1, x2n+2))]a4(x0,x1)

≤ [ψ(d(x2n, x2n+1))]a1(x0,x1).[ψ(d(x2n, x2n+1))]a2(x0,x1)

[ψ(d(x2n+1, x2n+2))]a3(x0,x1) · [ψ((d(x2n, x2n+1)]a4(x0,x1) · [ψ(d(x2n+1, x2n+2))]a4(x0,x1)

= [ψ(d(x2n, x2n+1))]a1(x0,x1)+a3(x0,x1)+a4(x0,x1) · [ψ(d(x2n, x2n+1))]a2(x0,x1)+a4(x0,x1)..

Thus

ψ(d(x2n+1, x2n+2)) ≤ [ψ(d(x2n, x2n+1))]
a1(x0,x1)+a3(x0,x1)+a4(x0,x1)

1−a2(x0,x1)−a4(x0,x1) . (2.2)

Let λ = a1(x0,x1)+a3(x0,x1)+a4(x0,x1)
1−a2(x0,x1)−a4(x0,x1)

< 1. Then from (2.1) and (2.2), we get

1 < ψ(d(xn, xn+1)) ≤ [ψ(d(xn−1, xn))]λ ≤ [ψ(d(xn−2, xn−1))]λ
2

≤ ··· ≤ [ψ(d(x0, x1))]λ
n

.

It gives

lim
n→∞

d(xn, xn+1) = 0.

From the condition (ψ3), there exist 0 < k < 1 and l ∈ (0,∞] such that

lim
n→∞

ψ(d(xn, xn+1))− 1

d(xn, xn+1)k
= l.

Suppose that l < ∞. In this case, let B = l
2 > 0. From the definition of the limit,

there exists n1 ∈ N such that

|ψ(d(xn, xn+1))− 1

d(xn, xn+1)k
− l| ≤ B

for all n > n1. This implies that

ψ(d(xn, xn+1))− 1

d(xn, xn+1)k
≥ l −B =

l

2
= B

for all n > n1. Then

n(d(xn, xn+1))k ≤ An[ψ(d(xn, xn+1))− 1.

Then there exists n1 ∈ N such that

d(xn, xn+1) ≤ 1

n1/k
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for all n > n1. Now we prove that {xn} is a Cauchy sequence. For m > n > n1 we
have,

d(xn, xm) ≤
m−1∑
i=n

d(xi, xi+1) ≤
m−1∑
i=n

1

i1/k
.

As 0 < k < 1, then
∑∞
i=1

1
i1/k

converges. Therefore, d(xn, xm) → 0 as m,n → ∞.
Thus we proved that {xn} is a Cauchy sequence in X. The completeness of X
ensures that there exist z ∈ X such that, xn → z as n→∞. First we show that z
is fixed point of S. We suppose on the contary that z 6= Sz, then by Proposition
(2.1), we have

1 < ψ(d(Sz, x2n+2)) = ψ(d(Sz, Tx2n+1))

≤ [ψ(d(z, x2n+1))]a1(z,x2n+1) · [ψ(d(z, Sz))]a2(z,x2n+1)

·[ψ(d(x2n+1, Tx2n+1))]a3(z,x2n+1) · [ψ(d(z, Tx2n+1) + d(x2n+1, Sz))]
a4(z,x2n+1)

= [ψ(d(z, x2n+1))]a1(z,x2n+1) · [ψ(d(z, Sz))]a2(z,x2n+1)

[ψ(d(x2n+1, x2n+2))]a3(z,x2n+1) · [ψ(d(z, x2n+2) + d(x2n+1, Sz))]
a4(z,x2n+1)

≤ [ψ(d(z, x2n+1))]a1(z,x1) · [ψ(d(z, Sz))]a2(z,x1) · [ψ(d(x2n+1, x2n+2))]a3(z,x1)

[ψ(d(z, x2n+2) + d(x2n+1, Sz))]
a4(z,x1).

Letting n→ +∞, in the previous inequality, we get

1 < ψ(d(Sz, z)) ≤ [ψ(d(z, Sz))]a2(z,x1)+a4(z,x1) < ψ(d(z, Sz))

which is a contradiction. Thus we have z = Sz. We also show that z is a fixed point
of T, so suppose on the contary that z 6= Tz, then by by Proposition (2.1), we have

1 < ψ(d(x2n+1, T z)) = ψ(d(Sx2n, T z))

≤ [ψ(d(x2n, z))]
a1(x2n,z) · [ψ(d(x2n, Sx2n))]a2(x2n,z)

·[ψ(d(z, Tz))]a3(x2n,z) · [ψ(d(x2n, T z) + d(z, Sx2n))]a4(x2n,z)

= [ψ(d(x2n, z))]
a1(x2n,z) · [ψ(d(x2n, x2n+1))]a2(x2n,z) · [ψ(d(z, Tz))]a3(x2n,z)

[ψ(d(x2n, T z) + d(z, x2n+1))]a4(x2n,z)

≤ [ψ(d(x2n, z))]
a1(x0,z) · [ψ(d(x2n, x2n+1))]a2(x0,z) · [ψ(d(z, Tz))]a3(x0,z)

[ψ(d(x2n, T z))]
a4(x0,z) · [ψ(d(z, x2n+1))]a4(x0,z)

Letting n→ +∞, in the previous inequality, we get

1 < ψ(d(z, Tz)) ≤ [ψ(d(z, Tz))]a3(x0,z)+a4(x0,z) < [ψ(d(z, Tz))]

which is a contradiction. Hence z = Tz. Therefore, z is a common fixed point of S
and T .

Now we show the uniqueness. Suppose that there exist another common fixed
point u of S and T that is u = Su = Tu. Assume that Su 6= Tz, then from (b) we
have

1 < ψ(d(u, z)) = ψ(d(Su, Tz))

≤ [ψ(d(u, z))]a1(u,z) · [ψ(d(u, Su))]a2(u,z) · [ψ(d(z, Tz))]a3(u,z) · [ψ(d(u, Tz) + d(z, Su))]a4(u,z)

≤ [ψ(d(u, z))]a1(u,z) · [ψ(d(u, z))]a4(u,z) · [ψ(d(z, u))]a4(u,z)

= [ψ(d(u, z))]a1(u,z)+2a4(u,z) < [ψ(d(u, z))]
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which is a contradiction to the fact that Su 6= Tz. Thus Su = Tz. Thus S and
T have a unique common fixed point, which ends the proof. �

Consequently, we have the following result.

Corollary 2.3. Let (X, d) be a complete metric space and S : X → X be self-
mapping. If there exist mappings a1, a2, a3, a4 ∈M(S, T ) such that for all x, y ∈ X:

(a) a1(x, y) + a2(x, y) + a3(x, y) + 2a4(x, y) < 1
(b)

ψ(d(Sx, Sy))

≤ [ψ(d(x, y))]
a1(x,y) · [ψ(d(x, Sx))]

a2(x,y) · [ψ(d(y, Sy))]
a3(x,y) · [ψ(d(x, Sy)) + d(y, Sx))]

a4(x,y)

where ψ ∈ Ψ, then S has a unique fixed point.

Proof. Taking S = T in Theorem 2.2. �

Theorem 2.4. Let (X, d) be a complete metric space and S, T : X → X be self-
mappings. If there exist mappings a1, a2, a3, a4 ∈ M(S, T ) such that for all x, y ∈
X:

(a) a1(x, y) + a2(x, y) + a3(x, y) + 2a4(x, y) < 1
(b) √

d(Sx, Ty)

≤ a1(x, y)
√
d(x, y) + a2(x, y)

√
d(x, Sx)) + a3(x, y)

√
d(y, Ty) + a4(x, y)

√
d(x, Ty) + d(y, Sx)

then S and T have a unique common fixed point.

Proof. Taking ψ(t) = e
√
t in Theorem 2.2. �

Corollary 2.5. Let (X, d) be a complete metric space and S : X → X be self-
mapping. If there exist mappings a1, a2, a3, a4 ∈M(S, T ) such that for all x, y ∈ X:

(a) a1(x, y) + a2(x, y) + a3(x, y) + 2a4(x, y) < 1
(b) √

d(Sx, Sy)

≤ a1(x, y)
√
d(x, y)) + a2(x, y)

√
d(x, Sx)) + a3(x, y)

√
d(y, Sy) + a4(x, y)

√
d(x, Sy) + d(y, Sx)

then S has a unique fixed point.

Proof. Taking ψ(t) = e
√
t in above Corollary. �

Remark 2.6. Notice that condition (2.1) is equivalent to

d(Sx, Ty) ≤ a12(x, y)d(x, y)

+a2
2(x, y)d(x, Sx) + a3

2(x, y)d(y, Ty) + a4
2(x, y)[d(x, Ty) + d(y, Sx)]

2a1(x, y)a2(x, y)
√
d(x, y)d(x, Sx) + 2a1(x, y)a3(x, y)

√
d(x, y)d(y, Ty)

+2a1(x, y)a4(x, y)
√
d(x, y)[d(x, Ty) + d(y, Sx)] + 2a2(x, y)a3(x, y)

√
d(x, Sx)d(y, Ty)

+2a2(x, y)a4(x, y)
√
d(x, Sx)[d(x, Ty) + d(y, Sx)]

+2a3(x, y)a4(x, y)
√
d(y, Ty)[d(x, Ty) + d(y, Sx)].

Theorem 2.7. Let (X, d) be a complete metric space and S, T :X → X be self-
mappings. If there exist mappings β1, β2, β3, β4 ∈ N(S, T ) such that for all x, y ∈ X:
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(a) β1(x) + β2(x) + β3(x) + 2β4(x) = 1;
(b)

ψ(d(Sx, Ty)) ≤ [ψ(d(x, y))]β1(x)·[ψ(d(x, Sx))]β2(x)·[ψ(d(y, Ty))]β3(x)·[ψ(d(x, Ty)+d(y, Sx))]β4(x)

where ψ ∈ Ψ, then S and T have a unique common fixed point.

Proof. Define a1, a2, a3, a4 : X ×X → [0, 1) by a1(x, y) = β1(x), a2(x, y) = β2(x),
a3(x, y) = β3(x) and a4(x, y) = β4(x) for all x, y ∈ X. Then for all x, y ∈ X;

(a)

a1(TSx, y) = β1(TSx) ≤ β1(x) = a1(x, y) and a1(x, STy) = β1(x) = a1(x, y)

a2(TSx, y) = β2(TSx) ≤ β2(x) = a2(x, y) and a2(x, STy) = β2(x) = a2(x, y),

a3(TSx, y) = β3(TSx) ≤ β3(x) = a3(x, y) and a3(x, STy) = β3(x) = a3(x, y);

a4(TSx, y) = β4(TSx) ≤ β4(x) = a3(x, y) and a4(x, STy) = β4(x) = a4(x, y);

(b)

a1(x, y) + a2(x, y) + a3(x, y) + 2a4(x, y) = β1(x) + β2(x) + β3(x) + 2β4(x) < 1,

c)

ψ(d(Sx, Ty)) ≤ [ψ(d(x, y))]β1(x) · [ψ(d(x, Sx))]β2(x) · [ψ(d(y, Ty))]β3(x)

[ψ(d(x, Ty) + d(y, Sx))]β4(x)

= [ψ(d(x, y))]a1(x,y) · [ψ(d(x, Sx))]a2(x,y) · [ψ(d(y, Ty))]a3(x,y)

[ψ(d(x, Ty) + d(y, Sx))]a4(x,y).

By Theorem 2.2, S and T have unique common fixed point. �

By letting β1(·) = β1, β2(·) = β2, β3(·) = β3 and β4(·) = β4 in Corollary 2.4, we
get the following result.

Corollary 2.8. Let (X, d) be a complete metric space and S, T :X → X be self-
mappings. If there exist non negative reals β1, β2, β3, β4 ∈ [0, 1) with β1 +β2 +β3 +
2β4 < 1 such that for all x, y ∈ X:

ψ(d(Sx, Ty)) ≤ [ψ(d(x, y))]β1 ·[ψ(d(x, Sx))]β2 ·[ψ(d(y, Ty))]β3 ·[ψ(d(x, Ty)+d(y, Sx))]β4

where ψ ∈ z, then S and T have a unique common fixed point.

By setting S = T in the above Corollary, we get Theorem 3.1 of [5].

Corollary 2.9. [5] Let (X, d) be a complete metric space and T : X → X be a
self-mapping. If there exists non negative reals β1, β2, β3, β4 ∈ [0, 1) with β1 + β2 +
β3 + 2β4 < 1 such that for all x, y ∈ X:

ψ(d(Tx, Ty)) ≤ [ψ(d(x, y))]β1 ·[ψ(d(x, Tx))]β2 ·[ψ(d(y, Ty))]β3 ·[ψ(d(x, Ty)+d(y, Tx))]β4

where ψ ∈ Ψ, then T has a unique fixed point.

Taking β2 = β3 = β4 and β1 = β in the above Corollary, we get Corollary 2.1 of
[11].
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Corollary 2.10. Let (X, d) be a complete metric space and T : X → X be a
self-mapping. If there exists non negative real β ∈ [0, 1) such that for all x, y ∈ X:

ψ(d(Tx, Ty)) ≤ [ψ(d(x, y))]β

where ψ ∈ Ψ, then T has a unique fixed point.

Theorem 2.11. Let (X, d) be a complete metric space and S, T : X → X be
self-mappings. If there exists the mappings β1, β2, β3, β4 ∈ N(S, T ) such that

(a) β1(x) + β2(x) + β3(x) + 2β4(x) < 1
(b) √

d(Sx, Ty)

≤ β1(x)
√
d(x, y) + β2(x)

√
d(x, Sx)) + β3(x)

√
d(y, Ty) + β4(x)

√
d(x, Ty) + d(y, Sx)

for all x, y ∈ X, then S and T have a unique common fixed point.

Remark 2.12. Notice that condition (2.4), is equivalent to

d(Sx, Ty) ≤ β12(x)d(x, y)

+β2
2(x)d(x, Sx) + β2

3(x)d(y, Ty) + β2
4(x)[d(x, Ty) + d(y, Sx)]

2β1(x)β2(x)
√
d(x, y)d(x, Sx) + 2β1(x)β3(x)

√
d(x, y)d(y, Ty)

+2β1(x)β4(x)
√
d(x, y)[d(x, Ty) + d(y, Sx)] + 2β2(x)β3(x)

√
d(x, Sx)d(y, Ty)

+2β2(x)β4(x)
√
d(x, Sx)[d(x, Ty) + d(y, Sx)]

+2β3(x)β4(x)
√
d(y, Ty)[d(x, Ty) + d(y, Sx)]

Corollary 2.13. Let (X, d) be a complete metric space and S : X → X be self-
mapping. If there exists the mappings β1, β2, β3, β4 ∈ N(S, T ) such that

(a) β1(x) + β2(x) + β3(x) + 2β4(x) < 1
(b) √

d(Sx, Sy)

≤ β1(x)
√
d(x, y)) + β2(x)

√
d(x, Sx)) + β3(x)

√
d(y, Sy) + β4(x)

√
d(x, Sy) + d(y, Sx)

for all x, y ∈ X, then S has a unique fixed point.

Corollary 2.14. Let (X, d) be a complete metric space and S : X → X be self-
mapping. If there exist the non negative real numbers β1, β2, β3, β4 such that

(a) β1 + β2 + β3 + 2β4 < 1
(b) √

d(Sx, Sy)

≤ β1
√
d(x, y)) + β2

√
d(x, Sx)) + β3

√
d(y, Sy) + β4

√
d(x, Sy) + d(y, Sx)

for all x, y ∈ X, then S has a unique fixed point.

Corollary 2.15. Let (X, d) be a complete metric space and S : X → X be self-
mapping. If there exists a constant β ∈ [0, 1) and such that

d(Sx, Sy) ≤βd(x, y)

for all x, y ∈ X, then S has a unique fixed point.
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Corollary 2.16. Let (X, d) be a complete metric space and S : X → X be self-
mapping. If there exist mappings β1, β2, β3, β4 ∈ N(S, T ) such that for all x, y ∈ X:

(a) β1(x) + β2(x) + β3(x) + 2β4(x) < 1
(b)

n
√
d(Sx, Sy)

≤ β1(x) n
√
d(x, y) + β2(x) n

√
d(x, Sx) + β3(x) n

√
d(y, Sy) + β4(x) n

√
d(x, Sy) + d(y, Sx)

then S has a unique fixed point.

Corollary 2.17. Let (X, d) be a complete metric space and S : X → X be self-
mapping. If there exist the non negative real numbers β1, β2, β3, β4 such that for all
x, y ∈ X:

(a) β1 + β2 + β3 + 2β4 < 1
(b)

n
√
d(Sx, Sy)

≤ β1
n
√
d(x, y) + β2

n
√
d(x, Sx) + β3

n
√
d(y, Sy) + β4

n
√
d(x, Sy) + d(y, Sx)

then S has a unique fixed point.
Now, let us introduce the following example which shows and support our de-

duced results.

Example 2.18. Consider the sequence
S1 = 1× 2
S2 = 1× 2 + 2× 3
S3 = 1× 2 + 2× 3 + 3× 4

Sn = 1× 2 + 2× 3 + . . .+ n(n+ 1) = n(n+1)(n+2)
3 .

Let X = {Sn : n ∈ N} and d (x, y) = |x− y| . Then (X, d) is a complete metric
space. Define the mapping T : X → X by,

T (S1) = S1, T (Sn) = Sn−1, for all n ≥ 2.

Clearly, the Banach contraction is not satisfied. In fact, we can check easily that

lim
n→∞

d(T (Sn), T (S1))

d(Sn, S1)
= lim
n→∞

d(Sn−1, S1)

d(Sn, S1)
= lim
n→∞

(n− 1)n(n+ 1)− 6

n(n+ 1)(n+ 2)− 6
= 1.

Let us consider the mapping ψ : (0,∞)→ (1,∞) defined by ψ(t) = e
√
tet . Then

it is easy to show that ψ ∈ Ψ. We shall prove that T satisfies the condition of the
result 2.10, that is,

d(T (Sn), T (Sm)) 6= 0 =⇒ e
√
d(T (Sn),T (Sm))ed(T (Sn),T (Sm)) ≤ eβ

√
d(Sn,Sm)ed(Sn,Sm)

for some β ∈ (0, 1). The above condition is equivalent to

d(T (Sn), T (Sm)) 6= 0 =⇒ d(T (Sn), T (Sm))ed(T (Sn),T (Sm)) ≤ β2d(Sn, Sm)ed(Sn,Sm).

So, we have to check that

d(T (Sn), T (Sm)) 6= 0 =⇒ d(T (Sn), T (Sm))ed(T (Sn),T (Sm))−d(Sn,Sm)

d(Sn, Sm)
≤ β2.

We consider two cases.
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Case 01: For 1 = n < m, we have

|T (Sm)− T (S1) | = |Sm−1 − S1| = 2× 3 + . . .+ (m− 1)(m)

and

d (Sm, S1) = |Sm − S1| = 2× 3 + . . .+ (m)(m+ 1).

Thus
d(T (Sm), T (Sn))ed(T (Sm),T (Sn))−d(Sm,Sn)

d(Sm, Sn)
=
e−m(m+1)

m(m+ 1)
≤ e−1.

Case 02: For m > n > 1, we have

|T (Sm)− T (Sn) | = (2n− 1)(2n) + (2n+ 1)(2n+ 2) + ...+ (2m− 3)(2m− 2)

and

|Sm − Sn| = (2n+ 1)(2n+ 2) + (2n+ 3)(2n+ 4) + ...+ (2m− 1)(2m).

Since m > n > 1, we have

d(T (Sm), T (Sn))ed(T (Sm),T (Sn))−d(Sm,Sn)

d(Sm, Sn)
=

(2n− 1)(2n)e(2n−1)(2n)−(2m−1)(2m)

(2m− 1)(2m)
≤ e−1

Hence all the conditions of result (2.10) are satisfied and S1 is a unique fixed
point of T .
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