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ON THE HYPERGEOMETRIC MATRIX k-FUNCTIONS

G. RAHMAN, A. GHAFFAR, S. D. PUROHIT, S. MUBEEN, M. ARSHAD

Abstract. The hypergeometric functions with the matrix arguments are con-
sidered to be important as they have many applications described by a number

of researchers. In this present paper, we deal with the study of the hypergeo-

metric k-functions i.e., Fk(P,Q;R; z) with the matrix arguments P , Q and R
and these matrix arguments satisfy the matrix differential equation in terms

of the new parameter k > 0 which is the improved version of generalization

of classical hypergeometric matrix functions. Further, we obtain an integral
representation of Fk(P,Q;R; z) for the case where Q, R and R−Q are positive

stable matrices with the property that QR = RQ by using the definitions of
gamma and beta matrix k-functions recently defined by the researchers.

1. Introduction

Most of the special functions encountered in physics, engineering, analytic func-
tions and probability theory are special cases of hypergeometric functions ([12,
19],[26]-[29]). A function of matrix argument is a real or complex valued func-
tion of the elements of a matrix. Special matrix functions appear in the literature
related to Statistics [1], Lie groups theory [11], and more recently in connection
with matrix analogues of Laguerre matrix polynomial and system of second or-
der differential equations for matrix arguments, orthogonal matrix polynomial and
second order differential equations, Hermite and Legendre differential equations
and the corresponding polynomial families (see [13]-[16]). Also, many researchers
([8]-[10],[17, 18]) have defined matrix computation, Bessel function of matrix ar-
guments, ordinary differential equation of matrix arguments, properties of gamma
and beta matrices and hypergeometric matrix arguments. Apart from the close
relationship with the well-known beta and gamma matrix k-functions, the emerg-
ing theory of orthogonal matrix polynomials ([4]-[6]) and its operational calculus
suggest the study of hypergeometric matrix k-functions.
The paper is organized as follows: In section 2, we deal with the study of new
properties of the beta and gamma matrix k-functions. We are mainly concerned
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with the matrix analog of the formula

Bk(P,Q) =
Γk(P )Γk(Q)

Γk(P +Q)
(1.1)

and may be regarded as a continuation of [25]. In Section 3, the Gauss hyperge-
ometric matrix k-functions Fk(P,Q;R; z) is introduced as a matrix power series.
Conditions for the convergence on the boundary of the unit disc are treated. In
section 4, we define some results of an integral representations of hypergeometric
matrix k-functions. Recently the researchers have worked on special k-functions
(see [20]-[22],[24]). Mubeen et al. [23] defined the solution of hypergeometric k-
differential equations. In this paper, we also prove that if matrices Q and R com-
mutes and are positive stables (where positive stable means if every eigenvalue of
the matrix has positive real part), then Fk(P,Q;R; z) is a solution of the differential
equation

kz(1− kz)ω′′ − kzPω′ + (R− (Q+ kI)kz)ω′ − PQω = 0.

If P is an arbitrary matrix in Cr×r and R is an invertible matrix whose eigenvalues
are not negative integers then we prove that equation

kz(1− kz)ω′′ − kzPω′ + (R+ (n− k)kIz)ω′ − nPω = 0

has matrix polynomial solutions of degree n for all integer n ≥ 1.
Finally in Section 4, we define an integral representation of the hypergeometric
matrix k-functions. Throughout in this paper, for a matrix P in Cr×r and its
spectrum σ(P ) denotes the set of all the eigenvalues of P . The 2-norm of P will be
denoted by ‖ P ‖ and it is defined by

‖ P ‖= sup
x 6=0

‖ Px ‖2
‖ x ‖2

(1.2)

where for a y in Cr×r, ‖ Y ‖2= (yTy)
1
2 is the Euclidean norm of y. Let us denote

σ(P ) and β(P ) the real numbers

α(P ) = max{Re(z) : z ∈ σ(P )}, β(Q) = min{Re(z) : z ∈ σ(P )}. (1.3)

Let f(z) and g(z) be two holomorphic functions of the complex variable z, which
are defined in an open set Ω of the complex plane, and P is a matrix in Cr×r with
σ(P ) ⊂ Ω, then from the properties of matrix functional calculus ([3],p.558), it
follows that

f(P )g(Q) = g(Q)f(P ). (1.4)

The reciprocal of gamma k-function denoted by Γ−1
k = 1

Γk
is an entire function of

the complex variable. Like wise the image of the inverse gamma matrix k-function
acting on the matrix P , denoted by Γ−1

k (P ) is a well defined matrix for k > 0.
Now, if

P + nkI is invertible matrix for every integer n ≥ 0 and k > 0,
then Γk is invertible and its inverse coincides with Γ−1

k (P ), and recently Mubeen
et al. [25] defined

P (P + kI)(P + 2kI) · · · (P + (n− 1)kI)Γ−1
k (P + nkI) = Γ−1

k (P ), n ≥ 1, k > 0.(1.5)
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In the same paper, they introduced by using the condition that P+nkI is invertible
matrix, then equation (1.5) can be written as

P (P + kI)(P + 2kI) · · · (P + (n− 1)kI) = Γk(P + nkI)Γ−1
k (P ), n ≥ 1, k > 0, (1.6)

and like the Pochhammer k-symbol for any matrix P in Cr×r by application of the
matrix functional calculus, they defined

(P )n,k = P (P + kI)(P + 2kI) · · · (P + (n− 1)kI), n > 0, (P )0 = I. (1.7)

The Schur deposition of a matrix P is given by (see [8], pp. 192-193)

‖etP ‖ ≤ etα(P )
r−1∑
i=0

(‖P‖r 1
2 t)

i!
, t ≥ 0 (1.8)

2. On Gamma, Beta Matrix k-Functions

In this section, we used the property of commutativity of matrices and
extend the matrix framework of gamma and beta k-functions which will be used
in section 4 to obtain an integral representation of the hypergeometric matrix k-
function. Further more for the sake of clarity in the presentation, we recall the
following results recently defined in [25].

Definition 1. Gamma Matrix k-Function [25]. If P is a positive stable
matrix in Cr×r, n ≥ 1 is an integer and k > 0, then

Γk(P ) = lim
n→∞

n!kn(P )−1
n,k(nk)

P
k −I . (2.1)

Definition 2. Beta Matrix k-Function [25]. If P and Q are positive stable
matrices in Cr×r, then beta k-function is defined by

βk(P,Q) =
1

k

1∫
0

t
P
k −I(1− t)

Q
k −Idt. (2.2)

Hence the authors defined that if P and Q are commuting positive stable matrices
then βk(P,Q) = βk(Q,P ), and commutativity is a necessary condition for the
symmetry of beta k-function, see [25].

Lemma 2.1. Let P and Q be positive matrices in Cr×r such that PQ = QP and
satisfy the condition P +Q+mkI is invertible for all integer m ≥ 0 and k > 0.

If n ≥ 0 is an integer, then the following identities hold:
(i)

βk(P,Q+ nkI) = (P +Q)−1
n,k(Q)n,kβk(P,Q),

(ii)

βk(P + nkI,Q+ nkI) = (P +Q)−1
2n,k(Q)n,kβk(P,Q).
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Proof. (i) For n = 0 the proof is obvious. Let us assume that 0 < m ≥ n and using
the fact that PQ = QP , it follows that

βk(P,Q+mkI) =
1

k

1∫
0

t
P
k −I(1− t)

Q
k +(m−1)Idt

=
1

k
lim
δ→0

1−δ∫
δ

t
P
k −I(1− t)

Q
k +(m−1)Idt

=
1

k
lim
δ→0

1−δ∫
δ

t
P+Q
k +(m−2)I(1− t)

Q
k +(m−1)It−(Qk +(m−1)I)dt

=
1

k
lim
δ→0

1−δ∫
δ

u(t)v(t)dt, (2.3)

where

u(t) = (1− t)
Q
k +(m−1)It−(Qk +(m−1)I)t

P
k , v(t) = t

P+Q
k +(m−2)I .

Integrating equation (2.3) by parts, we get

βk(P,Q+mkI) = lim
δ→0

[k(P +Q+ (m− 1)kI)−1(1− t)
Q
k +(m−1)It

P
k ]t=1−δ
t=δ

+ lim
δ→0

k(P +Q+ (m− 1)kI)−1

×
1−δ∫
δ

{1

k
(Q+ (m− 1)kI)(1− t)

Q
k +(m−2)It

P
k

+
1

k
(Q+ (m− 1)kI)(1− t)

Q
k +(m−1)t

P
k }dt

= k(P +Q+ (m− 1)kI)−1(Q+ (m− 1)kI)

× 1

k

1∫
0

(1− t)
Q
k +(m−1)t

P
k dt

= (P +Q+ (m− 1)kI)−1(Q+ (m− 1)kI)

× βk(P,Q+ (m− 1)kI).

Hence by using an induction, we obtain

βk(P,Q+ nkI) = (P +Q)−1
n,k(Q)n,kβk(P,Q).

(ii). To prove (ii), we apply (i) by taking P̂ = P + nkI where n ≥ 1. Then by (i)
it follows that

βk(P̂ , Q+ nkI) = (P̂ +Q)−1
n,k(Q)n,kβk(P̂ , Q). (2.4)

Since PQ = QP , therefore we have P̂Q = QP̂ and βk(P̂ , Q) = βk(Q, P̂ ). By (2.4)
it follows that

βk(P̂ , Q+ nkI) = (P̂ +Q)−1
n,k(Q)n,kβk(Q, P̂ ). (2.5)
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Also by (i), we have

βk(Q,P + nkI) = (Q+ P )−1
n,k(P )n,kβk(Q,P ) = (Q+ P )−1

n,k(P )n,kβk(P,Q). (2.6)

By equations (2.4) and (2.5), we get

βk(P + nkI,Q+ nkI) = βk(P̂ , Q+ nkI) = (P +Q+ nkI)−1
n,k(Q)n,k(P )n,k(2.7)

× (Q+ P )−1
n,kβk(P,Q). (2.8)

Now by definition, we have (P +Q+ nkI)n,k(Q+ P )n,k = (P +Q)2n,k. Hence by
substituting in equation (2.7), we get the required result as

βk(P + nkI,Q+ nkI) = (P +Q)−1
2n,k(P )n,k(Q)n,kβk(P,Q).

�

Lemma 2.2. Let P and Q be commuting matrices in Cr×r such that P , Q and
P +Q are positive stable matrices, then

βk(P,Q) = Γk(P )Γk(Q)Γ−1
k (P +Q).

Proof. Since the matrices P and Q are stable and also PQ = QP , we can write it
as

Γk(P )Γk(Q) = (

∞∫
0

uP−Ie−
uk

k du)(

∞∫
0

vQ−Ie−
vk

k dv). (2.9)

By changing of variables x = uk

uk+vk
and y = uk + vk, then equation (2.9) becomes

Γk(P )Γk(Q) =

∞∫
0

1∫
0

(xy)
1
k (P−I)e−

1
k (xy) 1

k
x

1
k−Iy

1
k (y(1− x))

1
k (Q−I)e−

1
k (y(1−x))

× 1

k
y

1
k−I(1− x)

1
k dxdy

= (
1

k

∞∫
0

(y)
1
k (P+Q)−Ie−

y
k dy)(

1

k

1∫
0

x
P
k −I(1− x)

Q
k −Idx). (2.10)

Now by replacing y = tk in the first integral of (2.10), we get

Γk(P )Γk(Q) = (

∞∫
0

tP+Q−Ie−
tk

k dt)(
1

k

1∫
0

x
P
k −I(1− x)

Q
k −Idx)

= Γk(P +Q)βk(P,Q).

�

Definition 3. Let us consider P and Q be two commuting matrices in Cr×r
such that for all integer n ≥ 0 and satisfy the condition

P + nkI, Q+ nkI, P +Q+ nkI ∀ k > 0, (2.11)

are invertible matrices.
Let α(P,Q) = min{α(P ), α(Q), α(P +Q)} and let n0 = n0(P,Q) = [|α(P,Q)|] + 1,
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where [|α(P,Q)|] denotes the entire part function. Then beta k-function βk(P,Q)
is defined by

βk(P,Q) = (P )−1
n0,k

(Q)−1
n0,k

(P +Q)2n0,kβk(P + n0kI,Q+ n0kI). (2.12)

Theorem 2.3. Let P and Q be two commuting matrices in Cr×r satisfying the
condition (2.11) for all integer n ≥ 0. then

βk(P,Q) = Γk(P )Γk(Q)Γ−1
k (P +Q).

Proof. Suppose that n0 = n0(P,Q) be defined in definition 3, then we can write

βk(P,Q) = (P )−1
n0,k

(Q)−1
n0,k

(P +Q)2n0,kβk(P + n0kI,Q+ n0kI),

where P + nkI and Q+ nkI are positive stable matrices. By (2.4) we can write

Γk(P ) = Γk(P + n0kI)(P + (n0 − 1)kI)−1 · · · (P + kI)−1P−1

= Γk(P + n0kI)(P )−1
n0,k

,

Γk(Q) = Γk(Q+ n0kI)(Q)−1
n0,k

and

Γk(P +Q) = Γk(P +Q+ 2n0kI)(P +Q)−1
2n0,k

.

Since PQ = QP , we can write

Γk(P )Γk(Q)Γ−1
k (P +Q)

= Γk(P +n0kI)Γk(Q+n0kI)Γ−1
k (P +Q+ 2n0kI)(P )−1

n0,k
(Q)−1

n0,k
(P +Q)2n0,k.

(2.13)

Since we know that the matrices P+n0kI, Q+n0kI and P+Q+2n0kI are positive
stable, so by Lemma 2 we get

Γk(P + n0kI)Γk(Q + n0kI)Γ−1
k (P + Q + 2n0kI) = βk(P + n0kI,Q + n0kI),

(2.14)

and by Lemma 2.1 (ii), we have

βk(P + n0kI,Q+ n0kI) = (P )n0,k(Q)n0,k(P +Q)−1
2n0,k

βk(P,Q). (2.15)

Hence by (2.13)-(2.15), it follows that

βk(P,Q) = Γk(P )Γk(Q)Γ−1
k (P +Q).

�

3. On the Hypergeometric Matrix k-Functions

In this section, we define the hypergeometric matrix k-function which is denoted
by Fk(P,Q;R; z) where k > 0 and defined as

Fk(P,Q;R; z) =

∞∑
n=0

(P )n,k(Q)n,k(R)−1
n,k

n!
zn, (3.1)

where the matrices P , Q and R are in Cr×r such that R+ nkI is invertible matrix
for all n ≥ 0. Now we prove that the hypergeometric matrix k-function converges
for |z| = 1 and k > 0.
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Theorem 3.1. Let P , Q and R be positive stable matrices in Cr×r such that

β(R) > α(P ) + α(Q). (3.2)

Then the series (3.1) is absolutely convergent for |z| = 1.

Proof. Assume that there exist a positive number δ, then by hypothesis (3.2) we
have

β(R)− α(P )− α(Q) = 2δ. (3.3)

Now let us write

(nk)1+ δ
k [

1

n!
(P )n,k(Q)n,k(R)−1

n,k]

=
(nk)1+ δ

k

n!

(n− 1)!kn−1(nk)
P
k (nk)−

P
k (P )n,k

(n− 1)!kn−1

× (n− 1)!kn−1(nk)
Q
k (nk)−

Q
k (Q)n,k

(n− 1)!kn−1
(R)−1

n,k(nk)
R
k (nk)−

R
k

=
(nk)1+ δ

k

n
(
(nk)−

P
k (P )n,k

(n− 1)!kn−1
)(nk)

P
k kn−1(

(nk)−
Q
k (Q)n,k

(n− 1)!kn−1
)(nk)

Q
k

× kn−1(n− 1)!(R)−1
n,k(nk)

R
k (nk)−

R
k

or

(nk)1+ δ
k [

1

n!
(P )n,k(Q)n,k(R)−1

n,k]

= kn(nk)
δ
k (

(nk)−
P
k (P )n,k

(n− 1)!kn−1
)(nk)

P
k (

(nk)−
Q
k (Q)n,k

(n− 1)!kn−1
)

× (nk)
Q
k ((n− 1)!kn−1(R)−1

n,k(nk)
R
k )(nk)−

R
k . (3.4)

By (1.8), we are taking into account that α(−R) = −β(R) thus we can write

‖(nk)
P
k ‖ ‖(nk)

Q
k ‖ ‖(nk)−

R
k ‖ ≤ (nk)

1
k (α(P )+α(Q)−β(R)){

r−1∑
j=0

(‖P‖r 1
2 lnn)j

kj!
}

× {
r−1∑
j=0

(‖Q‖r 1
2 lnn)j

kj!
}{
r−1∑
j=0

(‖R‖r 1
2 lnn)j

kj!
}.

By (3.3), we obtain

‖(nk)
P
k ‖ ‖(nk)

Q
k ‖ ‖(nk)−

R
k ‖ ≤ (nk)−

2δ
k {

r−1∑
j=0

[max{‖P‖, ‖Q‖, ‖R‖}r 1
2 ]j

kj!
(lnn)j}3.

(3.5)

Thus with the aid of (3.3)-(3.5) and for |z| = 1 , we get

lim
n→∞

(nk)1+ δ
k ‖

(P )n,k(Q)n,k(R)−1
n,kz

n

n!
‖
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≤ lim
n→∞

kn(nk)−
δ
k ‖ (nk)−

P
k (P )n,k

(n− 1)!kn−1
‖ ‖(nk)

P
k ‖

× ‖ (nk)−
Q
k (Q)n,k

(n− 1)!kn−1
‖ ‖(nk)

Q
k ‖

× ‖(n− 1)!kn−1(R)−1
n,k(nk)

R
k ‖ ‖(nk)−

R
k ‖

≤ ‖Γ−1
k (P )‖ ‖Γ−1

k (Q)‖ ‖Γk(R)‖

× lim
n→∞

k2n−2(nk)−
δ
k {

r−1∑
j=0

[max{‖P‖, ‖Q‖, ‖R‖}r 1
2 ]j

kj!

× (lnn)j}3

= 0,

because

lim
n→∞

n−
δ
k (lnn)j = 0, ∀ j ≥ 0, k > 0.

Thus

lim
n→∞

(nk)1+ δ
k ‖

(P )n,k(Q)n,k(R)−1
n,kz

n

n!
‖ = 0; |z| = 1,

therefore the series (3.1) is absolutely convergent for |z| = 1. Now we show that
under certain condition the hypergeometric matrix k-function Fk(P,Q;R; z) is a
solution of matrix differential equation of bilateral type. �

Theorem 3.2. Let R is matrix in Cr×r satisfying R+nkI is invertible matrix and
QR = RQ. Then Fk(P,Q;R; z) is the solution of

kz(1−kz)W ′′−kzPW ′+W ′(R−kz(Q+kI))−PQW = 0, 0 ≤ |z| < 1 (3.6)

satisfying Fk(P,Q;R; 0) = I.

Proof. By the given hypothesis QR = RQ, so we can write

Fn,k =
(P )n,k(Q)n,k(R)−1

n,k

n!
=

(P )n,k(R)−1
n,k(Q)n,k

n!
.

Let us denote

W (z) = Fk(P,Q;R; z) =

∞∑
n=0

Fn,kz
n, |z| < 1. (3.7)

Since W (z) is a power series convergent for |z| < 1, so it is termwise differentiable
in the given domain and

W ′(z) =

∞∑
n=1

nFn,kz
n−1, W ′′(z) =

∞∑
n=2

n(n− 1)Fn,kz
n−2, |z| < 1.

Hence

kz(1− kz)W ′′ − kzPW ′ +W ′(R− kz(Q+ kI))− PQW
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=

∞∑
n=2

nk(n− 1)Fn,kz
n−1 −

∞∑
n=2

nk2(n− 1)Fn,kz
n − P

∞∑
n=1

nkFn,kz
n

+

∞∑
n=1

nFn,kRz
n−1 −

∞∑
n=1

nkFn,k(Q+ kI)zn −
∞∑
n=0

PFn,kQz
n,

replacing n = n+ 1 in the first and fourth summation, we obtain

kz(1− kz)W ′′ − kzPW ′ +W ′(R− kz(Q+ kI))− PQW

=

∞∑
n=1

nk(n+ 1)Fn+1,kz
n−1 −

∞∑
n=2

nk2(n− 1)Fn,kz
n − P

∞∑
n=1

nkFn,kz
n

+

∞∑
n=1

nFn,kRz
n−1 −

∞∑
n=1

nkFn,k(Q+ kI)zn −
∞∑
n=0

PFn,kQz
n

=

∞∑
n=1

{nk(n+ 1)Fn,k − nk2(n− 1)Fn,k − nkPFn,k + (n+ 1)Fn+1,kR

− nkFn,k(Q+ kI)− PFn,kQ}zn + 2kF2,kz − kPF1,kz + F1,kR+ 2F2,kRz

− F1,k(Q+ kI)kz − PF0,kQ− PF1,kQz = 0.

By equating the coefficients of each power zn and noting that F0,k = I, we get

z0 : F1,kR− PIQ = 0,

z1 : 2kF2,k − kPF1,k + 2F2,kR− F1,k(Q+ kI)kz − PF1,kQ

= 2F2,k(kI +R)− PF1,k(kI +Q)− F1,k(Q+ kI)k = 0

...
...

⇒ Fn+1,k =
(P + nkI)Fn,k(Q+ nkI)(R+ nkI)−1

n+ 1
.

Hence W (z) = Fk(P,Q;R; z) is the solution of (3.6) satisfying W (0) = I.
�

Corollary 3.3. Let R be a matrix in Cr×r satisfying that R + nkI is invertible
matrix for n ≥ 0 and let P be an arbitrary matrix in Cr×r and n be a positive
integer. Then equation

kz(1− kz)W ′′ − kzPW ′ +W ′(R+ z(n− k)kI) + nPW = 0 (3.8)

has matrix polynomial solutions of degree n.

Proof. Let Q = −nI, then by theorem 3.2 the function W (z) = Fk(P,−nI;R; z)
satisfies equation (3.6) for Q = −nI. Hence

W (z) = Fk(P,Q;R; z) =

n∑
l=0

(P )l,k(−nI)l,k(R)l,k
l!

zl

is a matrix polynomial of degree n of equation (3.8). �
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4. An Integral Representation of Hypergeometric matrix k-function

In this section, we define the integral representation of hypergeometric matrix
k-function. If y and b are complex numbers with |y| < 1, then the Taylor series

expansion of (1− ky)−
b
k about y = 0 is given by [2]

(1− ky)−
b
k =

∞∑
n=0

(a)n,k
n!

yn, |y| < 1, a ∈ C. (4.1)

Let fn,k(a) be a function defined by

fn,k(a) =
(a)n,k
n!

yn =
a(a+ k)(a+ 2k) · · · (a+ (n− 1)k)

n!
yn, a ∈ C k > 0, (4.2)

for a fixed complex number y with |y| < 1. Clearly the function fn,k is an holo-
morphic function of variable a defined in the complex plane for k > 0. For a given
closed disc Dα = {a ∈ C : |a| ≤ α}, we have

|fn,k(a)| ≤ (|a|)n,k|y|n

n!
≤ (α)n,k|y|n

n!
, n ≥ 0, |a| ≤ α, k > 0.

Since
∞∑
n=0

(α)n,k|y|n

n!
≤ +∞,

so by the Weierstrass theorem for the convergence of holomorphic functions [27, 2]
it follows that

g(a) =

∞∑
n=0

(a)n,k
n!

yn = (1− ky)−
a
k

is holomorphic in R for k > 0. Thus by the application of the holomorphic func-
tional calculus [3], for any matrix P in Cr×r, the image of g by this functional
calculus acting on P yields

(1− ky)−
P
k = g(P ) =

∞∑
n=0

(P )n,k
n!

yn, |y| < 1, (4.3)

where

(P )n,k = P (P + kI) · · · (P + (n− 1)kI), k > 0.

Suppose that Q and R are matrices in Cr×r such that QR = RQ and Q, R and
R − Q are positive stable matrices. Thus by (1.5), (1.7) and with the aid of the
condition that Q, R and R−Q are positive stable matrices, we obtain

(Q)n,k(R)−1
n,k = Γ−1

k (Q)Γk(Q+ nkI)Γk(R)Γ−1
k (R+ nkI),

= Γ−1
k (Q)Γ−1

k (R−Q)Γk(R−Q)Γk(Q+ nkI)Γ−1
k (R+ nkI)Γk(R). (4.4)

By positive stability condition of the matrices and by Lemma 2.2 it follows that

1

k

1∫
0

t
Q
k +(n−1)I(1− t)

R−Q
k −Idt

= βk(Q+ nkI,R−Q) = Γk(R−Q)Γk(Q+ nkI)Γ−1
k (R+ nkI), (4.5)
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by (4.4) and (4.5), we get

(Q)n,k(R)−1
n,k = Γ−1

k (Q)Γ−1
k (R−Q)[

1

k

1∫
0

t
Q
k +(n−1)I(1− t)

R−Q
k −Idt]Γk(R). (4.6)

Hence, for |z| < 1 we can write

Fk(P,Q;R; z) =

∞∑
n=0

(P )n,k(Q)n,k(R)−1
n,k

n!
zn

=

∞∑
n=0

(P )n,kΓ−1
k (Q)Γ−1

k (R−Q)zn

Γk(R)n!

× [
1

k

1∫
0

t
Q
k +(n−1)I(1− t)

R−Q
k −Idt]

=

∞∑
n=0

[
1

k

1∫
0

(P )n,kΓ−1
k (Q)Γ−1

k (R−Q)t
Q
k +(n−1)I(1− t)

R−Q
k −IΓk(R)zn

n!
dt]. (4.7)

Now let us consider

Sn,k(t) =
(P )n,kΓ−1

k (Q)Γ−1
k (R−Q)t

Q
k +(n−1)I(1− t)

R−Q
k −IΓk(R)zn

n!
, 0 ≤ t ≤ 1,

and note that for 0 < t < 1 and n ≥ 0, we have

‖Sn,k(t)‖

≤
(‖P‖)n,k‖Γ−1

k (Q)‖‖Γ−1
k (R−Q)‖‖Γk(R)‖‖t

Q
k −I‖(1− t)

R−Q
k −I‖|z|n

n!
, k > 0. (4.8)

By (1.8) it follows that

‖t
Q
k −I ‖(1− t)

R−Q
k −I‖ ≤ t

α(Q)
k −1(1− t)

α(R−Q)
k −1[

r−1∑
j=0

(‖Q− kI‖r 1
2 ln t)j

kj!
]

× [

r−1∑
j=0

(‖R−Q− kI‖r 1
2 ln t)j

kj!
]

and noting that for 0 < t < 1, we have ln t < t < 1 and ln(1− t) < 1− t < 1, hence
from above expression we get

‖t
Q
k −I ‖(1− t)

R−Q
k −I‖ ≤ Λt

α(Q)
k −1(1− t)

α(R−Q)
k −1, 0 < t < 1, k > 0 (4.9)

where

Λ = [

r−1∑
j=0

(‖Q− kI‖r 1
2 )j

kj!
][

r−1∑
j=0

(‖R−Q− kI‖r 1
2 ln t)j

kj!
]. (4.10)

Now let S be the sum of the convergent series

S =

r−1∑
n=0

(‖P‖)n,k|z|n

n!
, |z| < 1 k > 0. (4.11)
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By (4.8)-(4.10), we obtain

∞∑
n=0

‖Sn,k(t)‖ ≤ φ(t) =
1

k
[LΛSt

α(Q)
k −1(1− t)

α(R−Q)
k −1], 0 < t < 1, k > 0, (4.12)

where

L = ‖Γ−1
k (Q)‖ ‖Γ−1

k (R−Q)‖ ‖Γk(R)‖.

Since α(Q) > 0, α(R−Q) > 0 and k > 0, then the function

φ(t) = 1
k [LΛt

α(Q)
k −1(1− t)

α(R−Q)
k −1] is integrable and

1∫
0

φ(t)dt = LΛSBk(α(Q), α(R−Q)).

Thus by dominated convergence theorem ([7], p.83), the series and the integral can
be computed in (4.7) and using QR = RQ, we can write

Fk(P,Q;R; z)

=
1

k

1∫
0

{
∞∑
n=0

(
(P )n,k(tz)n

n!
)t
Q
k −I(1− t)

R−Q
k −I}dtΓ−1

k (Q)Γk(R−Q)Γk(R). (4.13)

Now by (4.3), we obtain

∞∑
n=0

(P )n,k(tz)n

n!
= (1− ktz)−Pk , |z| < 1, 0 < t < 1, (4.14)

and (4.13) becomes

Fk(P,Q;R; z)

= Γ−1
k (Q)Γk(R−Q)Γk(R)

1

k

1∫
0

t
Q
k −I(1− t)

R−Q
k −I(1− ktz)−Pk dt. (4.15)

Summarizing, the following result has been established:

Theorem 4.1. Let P , Q and R be matrices in Cr×r such that QR = RQ and Q,
R, R−Q are positive stable matrices. Then for |z| < 1 it follows that;

Fk(P,Q;R; z) = Γ−1
k (Q)Γk(R−Q)Γk(R)[

1

k

1∫
0

t
Q
k −I(1−t)

R−Q
k −I(1−ktz)−Pk dt].

(4.16)

Corollary 4.2. Let P , Q and R be matrices in Cr×r and let
α̂(Q,R) = min{α(Q), α(R), α(R−Q)} and n1 = n1(Q,R) = [|α̂(Q,R)|] + 1, where
[|α̂(Q,R)|] denotes the entire part function. Suppose that QR = RQ, and

σ(Q) ⊂ R ∼ {−n;n ≥ n1, n ∈ Z}
σ(R−Q) ⊂ R ∼ {−n;n ≥ n1, n ∈ Z}

σ(R) ⊂ R ∼ {−2n;n ≥ n1, n ∈ Z}.
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Then for |z| < 1, we have

Fk(P,Q+ n1kI;R+ 2n1kI; z) = Γ−1
k (Q+ n1kI)Γk(R−Q+ n1kI)

× Γk(R+ 2n1kI)

× 1

k

1∫
0

t
Q
k +(n−1)I(1− t)

R−Q
k +(n−1)I

× (1− ktz)−Pk dt.

Proof. Consider the matrices P , Q̂ = Q + nkI, R̂ = R + nkI and R̂, Q̂,
R̂ − Q̂ = R − Q + n1kI are positive stable matrices. The result is now a conse-
quence of theorem 4.1.

Conclusion. In this paper, the authors conclude that for each positive value
of k there exist gamma, beta and hypergeometric matrix arguments which are the
improved generalized version of the said classical functions with matrix arguments.
Obviously the substitution k = 1 will lead to the results of the said classical func-
tions with matrix arguments.
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[16] L. Jódar, J. Sastre, On the Laguerre matrix polynomials, Utilitas Math. 53 (1998), pp. 37-48.
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