A NEW APPLICATION OF GENERALIZED ALMOST INCREASING SEQUENCES

(COMMUNICATED BY EBERHARD MALKOWSKY)

HíKMET SEYHAN ÖZARSLAN

Abstract

In the present paper, a general theorem dealing with $\left|A, p_{n} ; \delta\right|_{k}$ summability factors of infinite series has been proved by using almost increasing sequence. This theorem also includes some known and new results.

1. Introduction

Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$, and let $A=\left(a_{n v}\right)$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence $s=\left(s_{n}\right)$ to $A s=\left(A_{n}(s)\right)$, where

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}, \quad n=0,1, \ldots \tag{1.1}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $|A|_{k}, k \geq 1$, if (see [10])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty \tag{1.2}
\end{equation*}
$$

where

$$
\bar{\Delta} A_{n}(s)=A_{n}(s)-A_{n-1}(s)
$$

Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{1.3}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
\sigma_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{1.4}
\end{equation*}
$$

[^0]defines the sequence $\left(\sigma_{n}\right)$ of the Riesz mean or simply the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see 5]). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [2])
\[

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\Delta \sigma_{n-1}\right|^{k}<\infty \tag{1.5}
\end{equation*}
$$

\]

and it is said to be summable $\left|A, p_{n} ; \delta\right|_{k}, k \geq 1$ and $\delta \geq 0$, if (see [7])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty \tag{1.6}
\end{equation*}
$$

If we take $a_{n v}=\frac{p_{v}}{P_{n}}$ and $\delta=0$, then $\left|A, p_{n} ; \delta\right|_{k}$ summability reduces to $\left|\bar{N}, p_{n}\right|_{k}$ summability. Also, if we take $\delta=0$, then $\left|A, p_{n} ; \delta\right|_{k}$ summability reduces to $\left|A, p_{n}\right|_{k}$ summability (see [9]). In the special case $\delta=0$ and $p_{n}=1$ for all $n,\left|A, p_{n} ; \delta\right|_{k}$ summability is the same as $|A|_{k}$ summability. Furthermore, if we take $a_{n v}=\frac{p_{v}}{P_{n}}$, then $\left|A, p_{n} ; \delta\right|_{k}$ summability is the same as $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability.
Before stating the main theorem we must first introduce some further notations.
Given a normal matrix $A=\left(a_{n v}\right)$, we associate two lover semimatrices $\bar{A}=\left(\bar{a}_{n v}\right)$ and $\hat{A}=\left(\hat{a}_{n v}\right)$ as follows:

$$
\begin{equation*}
\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, \quad n, v=0,1, \ldots \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{a}_{00}=\bar{a}_{00}=a_{00}, \quad \hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, \quad n=1,2, \ldots \tag{1.8}
\end{equation*}
$$

It may be noted that \bar{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}=\sum_{v=0}^{n} \bar{a}_{n v} a_{v} \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\Delta} A_{n}(s)=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} . \tag{1.10}
\end{equation*}
$$

2. Known Result

In [3], Bor has proved the following theorem for $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series.

Theorem 2.1. Let $\left(X_{n}\right)$ be a positive non-decreasing sequence and let there be sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{gather*}
\left|\Delta \lambda_{n}\right| \leq \beta_{n} \tag{2.1}\\
\beta_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{2.2}\\
\sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty \tag{2.3}\\
\left|\lambda_{n}\right| X_{n}=O(1) \tag{2.4}
\end{gather*}
$$

If

$$
\begin{equation*}
\sum_{v=1}^{n} \frac{\left|t_{v}\right|^{k}}{v}=O\left(X_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{2.5}
\end{equation*}
$$

where $\left(t_{n}\right)$ is the nth $(C, 1)$ mean of the sequence $\left(n a_{n}\right)$, and $\left(p_{n}\right)$ is a sequence such that

$$
\begin{align*}
P_{n} & =O\left(n p_{n}\right), \tag{2.6}\\
P_{n} \Delta p_{n} & =O\left(p_{n} p_{n+1}\right), \tag{2.7}
\end{align*}
$$

then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

3. Main Result

The aim of this paper is to generalize Theorem 2.1 for $\left|A, p_{n} ; \delta\right|_{k}$ summability by using almost increasing sequence. For this we need the concept of an almost increasing sequence. A positive sequence $\left(b_{n}\right)$ is said to be almost increasing if there exist a positive increasing sequence $\left(c_{n}\right)$ and two positive constants A and B such that $A c_{n} \leq b_{n} \leq B c_{n}$ (see [1). Obviously every increasing sequence is almost increasing. However, the converse need not be true as can be seen by taking the example, say $b_{n}=n e^{(-1)^{n}}$.
Now, we shall prove the following theorem.
Theorem 3.1. Let $\left(X_{n}\right)$ be an almost increasing sequence. The conditions (2.1)(2.4) and (2.6)-2.7) of Theorem 2.1 and the conditions

$$
\begin{gather*}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty, \tag{3.1}\\
\sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\Delta_{v} \hat{a}_{n v}\right|=O\left\{\left(\frac{P_{v}}{p_{v}}\right)^{\delta k-1}\right\} \quad \text { as } m \rightarrow \infty, \tag{3.2}
\end{gather*}
$$

where $\left(t_{n}\right)$ as is in Theorem 2.1, are satisfied. If $A=\left(a_{n v}\right)$ is a positive normal matrix such that

$$
\begin{gather*}
\bar{a}_{n 0}=1, n=0,1, \ldots \tag{3.3}\\
a_{n-1, v} \geq a_{n v}, \text { for } n \geq v+1, \tag{3.4}\\
a_{n n}=O\left(\frac{p_{n}}{P_{n}}\right), \tag{3.5}\\
\left|\widehat{a}_{n, v+1}\right|=O\left(v\left|\Delta_{v}\left(\widehat{a}_{n v}\right)\right|\right) \tag{3.6}
\end{gather*}
$$

then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|A, p_{n} ; \delta\right|_{k}, k \geq 1$ and $0 \leq \delta<1 / k$.
We need the following lemmas for the proof of Theorem 3.1.

Lemma 3.2. (6]) If $\left(X_{n}\right)$ is an almost increasing sequence, then under the conditions (2.2)-(2.3) we have that

$$
\begin{align*}
& n X_{n} \beta_{n}=O(1) \tag{3.7}\\
& \sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty \tag{3.8}
\end{align*}
$$

Lemma 3.3. (3) If conditions (2.6) and (2.7) are satisfied, then we have

$$
\begin{equation*}
\Delta\left(\frac{P_{n}}{n^{2} p_{n}}\right)=O\left(\frac{1}{n^{2}}\right) \tag{3.9}
\end{equation*}
$$

Lemma 3.4. (3]) If conditions (2.1)-2.4) are satisfied, then we have that

$$
\begin{align*}
\lambda_{n} & =O(1) \tag{3.10}\\
\Delta \lambda_{n} & =O\left(\frac{1}{n}\right) . \tag{3.11}
\end{align*}
$$

4. Proof of Theorem 3.1

Let $\left(I_{n}\right)$ denotes A-transform of the series $\sum_{n=1}^{\infty} \frac{a_{n} P_{n} \lambda_{n}}{n p_{n}}$. Then, we have by (1.9) and (1.10)

$$
\bar{\Delta} I_{n}=\sum_{v=1}^{n} \hat{a}_{n v} \frac{a_{v} P_{v} \lambda_{v}}{v p_{v}}
$$

Applying Abel's transformation to this sum, we get that

$$
\begin{aligned}
\bar{\Delta} I_{n}= & \sum_{v=1}^{n} \hat{a}_{n v} \frac{v a_{v} P_{v} \lambda_{v}}{v^{2} p_{v}} \\
= & \sum_{v=1}^{n-1} \Delta_{v}\left(\frac{\hat{a}_{n v} P_{v} \lambda_{v}}{v^{2} p_{v}}\right) \sum_{r=1}^{v} r a_{r}+\frac{\hat{a}_{n n} P_{n} \lambda_{n}}{n^{2} p_{n}} \sum_{r=1}^{n} r a_{r} \\
= & \sum_{v=1}^{n-1} \Delta_{v}\left(\frac{\hat{a}_{n v} P_{v} \lambda_{v}}{v^{2} p_{v}}\right)(v+1) t_{v}+\frac{a_{n n} P_{n} \lambda_{n}}{n^{2} p_{n}}(n+1) t_{n} \\
= & \frac{a_{n n} P_{n} \lambda_{n}}{n^{2} p_{n}}(n+1) t_{n}+\sum_{v=1}^{n-1} \Delta_{v}\left(\hat{a}_{n v}\right) \frac{(v+1)}{v^{2}} \frac{P_{v} \lambda_{v}}{p_{v}} t_{v} \\
& +\sum_{v=1}^{n-1} \frac{\hat{a}_{n, v+1} P_{v}}{p_{v}} \Delta \lambda_{v} t_{v} \frac{(v+1)}{v^{2}}+\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \lambda_{v+1} \Delta\left(\frac{P_{v}}{v^{2} p_{v}}\right) t_{v}(v+1) \\
= & I_{n, 1}+I_{n, 2}+I_{n, 3}+I_{n, 4} .
\end{aligned}
$$

Since

$$
\left|I_{n, 1}+I_{n, 2}+I_{n, 3}+I_{n, 4}\right|^{k} \leq 4^{k}\left(\left|I_{n, 1}\right|^{k}+\left|I_{n, 2}\right|^{k}+\left|I_{n, 3}\right|^{k}+\left|I_{n, 4}\right|^{k}\right)
$$

to complete the proof of Theorem 3.1, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|I_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4 \tag{4.1}
\end{equation*}
$$

First, by using Abel's transformation, we have that

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|I_{n, 1}\right|^{k} & =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1} a_{n n}^{k}\left(\frac{P_{n}}{p_{n}}\right)^{k}\left|\lambda_{n}\right|^{\left\lvert\, \frac{\mid t_{n}}{n^{k}}\right.} \\
& =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{r=1}^{n}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k-1}\left|t_{r}\right|^{k}+O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{n=1}^{m-1} \beta_{n} X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by (2.1), 2.4), (2.6), (3.1), (3.5), 3.8, (3.10 and (3.11).
Now, using the fact that $P_{v}=O\left(v p_{v}\right)$ by (2.6), we have that

$$
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|I_{n, 2}\right|^{k}=O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|\left|t_{v}\right|\right)^{k}
$$

Now, applying Hölder's inequality with indices k and k^{\prime}, where $k>1$ and $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, as in $I_{n, 1}$, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|I_{n, 2}\right|^{k} & =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right) \times\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right)^{k} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k-1}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \\
& =O(1) a s \quad m \rightarrow \infty
\end{aligned}
$$

by (2.1), 2.4), (3.1), (3.2), (3.3), (3.4), (3.5), (3.8) and (3.11).
Now, using Hölder's inequality, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|I_{n, 3}\right|^{k} & =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\left.\left.\sum_{v=1}^{n-1} v\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \beta_{v}\right|_{v}\right|^{k}\right) \times\left(\sum_{v=1}^{n-1} v\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \beta_{v}\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left(\sum_{v=1}^{n-1} v\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \beta_{v}\left|t_{v}\right|^{k}\right)^{\prime} \\
& =O(1) \sum_{v=1}^{m} v \beta_{v}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m} v \beta_{v}\left|t_{v}\right|^{k}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k-1} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k-1}\left|t_{r}\right|^{k}+O(1) m \beta_{m} \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k-1}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \sum_{v=1}^{m-1}(v+1)\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) a s m \rightarrow \infty
\end{aligned}
$$

by (2.1), (2.3), (2.6), (3.1), (3.2), (3.5), (3.6), (3.7) and (3.8).
Finally, since $\Delta\left(\frac{P_{v}}{v^{2} p_{v}}\right)=O\left(\frac{1}{v^{2}}\right)$ by Lemma 3.3, as in $I_{n, 1}$, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|I_{n, 4}\right|^{k} & =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{t_{v} \mid}{v}\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{n v}\right|\left|\lambda_{v+1}\right|\left|t_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{n v}\right|\left|\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k}\right) \times\left(\sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{n v}\right|\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left(\sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{n v}\right|\left|\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k}\right) \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right|^{k-1}\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k-1}\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k}=O(1) \quad a s \quad m \rightarrow \infty
\end{aligned}
$$

by (2.1), 2.4, (2.6), (3.1), (3.2, (3.5), (3.6) and (3.11).
Therefore we get

$$
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|I_{n, r}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty, \quad \text { for } \quad r=1,2,3,4
$$

This completes the proof of Theorem 3.1.
If we take $a_{n v}=\frac{p_{v}}{P_{n}}$ and $\delta=0$, then we get a result of Bor [4] for $\left|\bar{N}, p_{n}\right|_{k}$ summability factors. Also, if we take $\delta=0$, then we get a result of Özarslan [8] for $\left|A, p_{n}\right|_{k}$ summability factors. Furthermore, if we take $\left(X_{n}\right)$ as a positive nondecreasing sequence, then we get a new result dealing with $\left|A, p_{n} ; \delta\right|_{k}$ summability factors.

Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

[1] N. K. Bari and S. B. Stečkin, Best approximations and differential properties of two conjugate functions, (Russian) Trudy. Moskov. Mat. Obšč. 5 (1956) 483-522.
[2] H. Bor, On two summability methods, Math. Proc. Camb. Philos. Soc. 97 (1985) 147-149.
[3] H. Bor, Absolute summability factors for infinite series, Indian J. Pure Appl. Math. 19 (1988) 664-671.
[4] H. Bor, A note on absolute Riesz summability factors, Math. Inequal. Appl. 10 (2007) 619625.
[5] G. H. Hardy, Divergent Series, Oxford University Press, Oxford, 1949.
[6] S. M. Mazhar, A note on absolute summability factors, Bull. Inst. Math. Acad. Sinica 25 (1997) 233-242.
[7] H. S. Özarslan and H. N. Öğdük, Generalizations of two theorems on absolute summability methods, Aust. J. Math. Anal. Appl. 1 (2004) 7 pp.
[8] H. S. Özarslan, A new application of almost increasing sequences, Miskolc Math. Notes 14 (2013) 201-208.
[9] W. T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series. IV, Indian J. Pure Appl. Math. 34 (11) (2003) 1547-1557.
[10] N. Tanovič-Miller, On strong summability, Glas. Mat. Ser. III 14 (34) (1979) 87-97.
HIKMET SEYHAN ÖZARSLAN
Department of Mathematics, Erciyes University, 38039 Kayseri, TURKEY
E-mail address: seyhan@erciyes.edu.tr; hseyhan38@gmail.com

[^0]: 2010 Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G99.
 Key words and phrases. Summability factors, absolute matrix summability, almost increasing sequence, infinite series, Hölder inequality, Minkowski inequality.
 (c)2016 Universiteti i Prishtinës, Prishtinë, Kosovë.

 Submitted February 22, 2016. Published April 23, 2016.

