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(DEDICATED IN OCCASION OF THE 70-YEARS OF
PROFESSOR HARI M. SRIVASTAVA)

PULAK SAHOO

ABSTRACT. With the aid of weighted sharing method we study the uniqueness
of meromorphic (entire) functions concerning some general nonlinear differen-
tial polynomials sharing fixed points. The results of the paper improve and
generalize some results due to Zhang [24] and the present author [16].

1. INTRODUCTION, DEFINITIONS AND RESULTS

In this paper, by meromorphic functions we will always mean meromorphic func-
tions in the complex plane. We adopt the standard notations in the Nevanlinna
theory of meromorphic functions as explained in [10], [20] and [22]. For a noncon-
stant meromorphic function h, we denote by T'(r, h) the Nevanlinna characteristic
of h and by S(r,h) any quantity satisfying S(r, h) = o{T'(r,h)} as r — oo possibly
outside a set of finite linear measure. A meromorphic function a(z)(# o) is called
a small function with respect to f, provided that T'(r,a) = S(r, f).

Let f and ¢ be two nonconstant meromorphic functions, and let a be a finite
value. We say that f and g share the value a CM, provided that f—a and g—a have
the same zeros with the same multiplicities. Similarly, we say that f and g share a
IM, provided that f — a and g — a have the same zeros ignoring multiplicities. In
addition, we say that f and g share co CM, if % and % share 0 CM, and we say

that f and g share co IM, if % and % share 0 IM (see[22]). A finite value 2 is a
fixed point of f(2) if f(29) = 2o and we define

E; ={z € C: f(z) = z, counting multiplicities}.
In 1959, Hayman (see [9], Corollary of Theorem 9) proved the following theorem.

Theorem A. Let f be a transcendental meromorphic function and n(> 3) is an
integer. Then f™f" =1 has infinitely many solutions.
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Corresponding to which, the following result was obtained by Yang and Hua [19]
and by Fang and Hua [7] respectively.

Theorem B. Let f and g be two nonconstant meromorphic (entire) functions,
n > 11 (n > 6) be a positive integer. If f™f' and g"g’ share 1 CM, then either
f(z) = c1e®®, g(z) = coe™°*, where c1, ca and ¢ are three constants satisfying
(crc2)" 12 = —1 or f = tg for a constant t such that t"*! = 1.

In 2000, Fang [5] proved the following result.

Theorem C. Let f be a transcendental meromorphic function, and let n be a
positive integer. Then f™f' — z has infinitely many solutions.

Corresponding to Theorem C, Fang and Qiu [8] proved the following result.

Theorem D. Let f and g be two nonconstant meromorphic functions, and let
n > 11 be a positive integer. If f*f — 2z and g"g' — z share 0 CM, then either
flz)= 016632, g(z) = coe™ %", where c1, co and ¢ are three nonzero complex numbers
satisfying 4(cic2)"1c? = —1 or f = tg for a complex number t such that t"+! = 1.

Considering k th derivative instead of first derivative, Hennekemper-Hennekemper
[11], Chen [4] and Wang [17] proved the following theorem.

Theorem E. Let f be a transcendental entire function and n, k be two positive
integers with n >k + 1. Then (f")(k) =1 has infinitely many solutions.

Corresponding to Theorem E Fang [6] proved the following theorem.

Theorem F. Let f and g be two nonconstant entire functions, and let n, k be two
positive integers with n > 2k + 8. If [f*(f — 1)]*) and [g"(g — 1)]*) share 1 CM,
then f =g.

In 2008, Zhang [24] extended Theorem F by using the idea of sharing fixed points
and obtained the following theorems.

Theorem G. Let f and g be two nonconstant entire functions, and n, k be two
positive integers with n > 2k + 6. If Epns_1yy0 = Egn(g—1))m, then f = g.

Naturally one may ask the following question.
Question 1. Is it really possible in any way to relax the nature of sharing the
fixed point in Theorem G without increasing the lower bound of n ?

To state the next result we need the following definition known as weighted
sharing of values introduced by I. Lahiri [12, 13] which measure how close a shared
value is to being shared CM or to being shared IM.

Definition 1. Let k be a nonnegative integer or infinity. For a € CU {oco} we
denote by Ex(a; f) the set of all a-points of f where an a-point of multiplicity m is
counted m times if m < k and k+1 times if m > k. If Ex(a; f) = Ex(a;g), we say
that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k, then zy is
an a-point of f with multiplicity m(< k) if and only if it is an a-point of g with
multiplicity m(< k) and 2o is an a-point of [ with multiplicity m(> k) if and only
if it is an a-point of g with multiplicity n(> k), where m is not necessarily equal to
n.
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We write f, g share (a,k) to mean that f, g share the value a with weight k.
Clearly if f, g share (a,k) then f, g share (a,p) for any integer p, 0 < p < k. Also
we note that f, g share a value a IM or CM if and only if f, g share (a,0) and
(a,00) respectively.

Using the idea of weighted sharing of values, recently the present author [16]
proved the following uniqueness theorem for some nonlinear differential polynomials
sharing 1-points.

Theorem H. Let f(2) and g(z) be two transcendental meromorphic functions, and
let n(>1), k(> 1), m(> 1) and (> 0) be four integers. Let P(z) = ap2™ + ... +
a1z + ag, where ag(# 0), a1, ... , am(# 0) are complex constants. Let [f™P(f)]*
and [g"P(g)]*®) share (1,1) and one of the following conditions holds:
(a)l > 2 and n > 3k +m + 8;
(b)l=1 and n >4k +3m/2 +9;
(¢) 1l =0 and n > 9k + 4m + 14.
Then either [f*P(f)]®[g"P(¢)]*) = 1 or f(z) = tg(z) for a constant t such
that t¢ = 1, where d = ged{n +m,...n +m — i,...n + 1,n}, am_; # 0 for
some i = 0,1,....,m or f and g satisfy the algebraic equation R(f,g) = 0, where
R(z,y) = 2™ (amax™ + ... + a1 + ag) — Y™ (amy™ + ... + a1y + aop).

The possibility [f*P(f)]*)[¢"P(9)]*® =1 does not occur for k = 1.

Natural question arises:

Question 2. Can one replace the shared value by shared fixed points in Theorem
H?

In the paper, we will prove two theorems second of which will not only improve
Theorem G by relaxing the nature of sharing the fixed point and at the same time
provide a supplementary and generalized result of Theorem H. Moreover, Theorem
2 deal with question 1 and question 2. We now state the main results of the paper.

Theorem 1.1. Let f be a transcendental meromorphic function and n, k, m be
three positive integers such that n > k + 3. Let P(z) be defined as in Theorem H.
Then (f*P(f))*) has infinitely many fized points.

Theorem 1.2. Let f and g be two transcendental meromorphic functions, and let
n, k and m be three positive integers. Let P(z) be defined as in Theorem H. Let
[f"P(£)]%) and [g"P(g)]*) share (z,1) where [(> 0) is an integer; f, g share (00, 0)
and one of the following conditions holds:

(i)l >2andn>3k+m+T7;

(i)l =1 and n > 4k +3m/2 + 8;

(i1i) 1 = 0 and n > 9k + 4m + 13.

Then either f(z) = tg(z) for a constant t such that t? = 1, where d = (n+m, ...,n+
m—1i,..,n), am—; # 0 for some i =0,1,2,...m or [ and g satisfy the algebraic
equation R(f,g) =0, where

R(z,y) = 2" (amz™ + Am1z™ VL F ag) — y" (amy™ + U y™ P 4+ agp).
Corollary 1.3. Let f and g be two transcendental entire functions, and let n, k and
m be three positive integers. Let P(z) be defined as in Theorem H. Let [f*P(f)]*)
and [g"P(g)]"®) share (z,1) where 1(> 0) is an integer and one of the following

conditions holds:
(i)l >2andn>2k+m+4;
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(ii)) 1 =1 and n > 2E3mL9,
(i11) 1 =0 and n > bk +4m + 7.
Then the conclusions of Theorem 1.2 holds.

Remark. Corollary 1.3 is an improvement of Theorem G.

Remark. If [f"P(f)]* and [g"P(g)]*) share (1,1) where (> 0) is an integer and
f, g share (00,0), then the conclusions of Theorem 1.2 holds in each of the cases
(i) - (i) of Theorem 1.2.

We now explain some definitions and notations which are used in the paper.

Definition 2. [14] For a € CU{c0} we denote by N(r,a; f |=1) the counting func-
tions of simple a-points of f. For a positive integer p we denote by N(r,a; f |< p)
the counting function of those a-points of f (counted with proper multiplicities)
whose multiplicities are not greater than p. By N(r,a; f |< p) we denote the corre-
sponding reduced counting function.

In an analogous manner we define N(r,a; f |> p) and N(r,a; f |> p).

Definition 3. [13] Let k be a positive integer or infinity. We denote by N (r,a; f)
the counting function of a-points of f, where an a-point of multiplicity m is counted
m times if m < k and k times if m > k. Then

Ni(r,a; f) = N(r,a: f) + N(r,a; f |2 2) + ... + N(r,a: f [ k).

Clearly Ny(r,a; f) = N(r,a; f).

Definition 4. [1, 2] Let f and g be two nonconstant meromorphic functions such
that f and g share the value 1 IM. Let zo be a 1-point of f with multiplicity p and also
a 1-point of g with multiplicity q. We denote by Np,(r,1; f) the counting function
of those 1-points of f and g, where p > q, by N]?(r, 1; f) the counting function of
those 1-points of f and g, where p = q = 1, by Ngc(r,l;f) (k > 2is aninteger)
the counting function of those 1-points of f and g, where p = q > k, where each
point in these counting functions is counted only once. In the same manner we can

define N1 (r,1;9), NB(T, 1;9) and N,(Ek(r, 1;9).

Definition 5. [1, 2] Let f and g be two nonconstant meromorphic functions such
that f and g share the value 1 IM. Let zg be a 1-point of f with multiplicity p and
also a 1-point of g with multiplicity q. For a positive integer k, Nf>k(r, 1;9) denotes
the reduced counting function of those 1-points of f and g such thatp > q=k. In
an analogous way we can define N g~i(r,1; f).

Definition 6. [12, 13] Let f and g be two nonconstant meromorphic functions
such that f and g share the value a IM. We denote by N.(r,a; f,g) the reduced
counting function of those a-points of f whose multiplicities differ from the mul-

tiplicities of the corresponding a-points of g. Clearly N.(r,a; f,g) = N.(r,a; g, f)
and N.(r,a; f,9) = Np(r,a; f) + Np(r,a; 9).

2. LEMMAS

In this section we present some lemmas which will be needed in the sequel. Let
F and G be two nonconstant meromorphic functions defined in C. We shall denote
by H the following function:

F// 2Fl G// 2G/
H=|~— - (= - .
(F’ Fl) (G’ G1>
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Lemma 2.1. [21, 23] If F, G share (1,0) and H # 0 then
N;:)(T,l;F) < N(r,o0; H) 4+ S(r, F) + S(r, G).
Lemma 2.2. [15] If F, G share (1,0), (00,0) and H # 0 then
N(r,00; H) < N(r,0; F |>2) + N(r,0;G |> 2) + N.(r,00; F,G) + N.(r, 1; F, G)
+ No(r,0; F') + No(r,0; G'),
where No(r,0; F') is the reduced counting function of those zeros of " which are
not the zeros of F(F — 1), and No(r,0; G') is similarly defined.

Lemma 2.3. [18] Let f be a nonconstant meromorphic function and let a,(z)(Z 0),
an-1(2), ... , ag(z) be meromorphic functions such that T(r,a;(z)) = S(r, f) for
1=0,1,2,...,n. Then

T(ryanf™ + U1 f" P+ Farf +ag) = nT(r, f)+ S(r, f).

Lemma 2.4. [25] Let f be a nonconstant meromorphic function, and p, k be pos-
itive integers. Then

Ny (r.0570) < T (1 fD) =T )+ Nyra(r,0: ) + S0 ), (1)

N, (’/‘,O;f(k)) < kN(r,00; f) + Npsi(r,0; f) + S(r, £). (2.2)

Lemma 2.5. [1] Let f and g be two nonconstant meromorphic functions that share
(1,1). Then

ONL(r, 15 ) + 2N 1 (r, 15.9) + NS (r,1; f) = Nysa(r, 1;9) < N(r,1;9) — N(r, 1; 9).

Lemma 2.6. [2] Let f and g be two nonconstant meromorphic functions that share

(1,1). Then

Npo2(r,1:9) < 580 0:1) + 5 N, 00: ) = 2 Na(r,0: 1) + 5, ),

where Ng(r,0; f') denotes the counting function of those zeros of f' which are not

zeros of f(f —1).

Lemma 2.7. [2] Let f and g be two nonconstant meromorphic functions that share
(1,0). Then

NL(ra ]-; f) + 2@[1(7.7 179) + NEQ(Ta 1; f) - Nf>1(707 179) - Ng>1(711 ]-; f)

< N(r,1;9) = N(r,1;9).

Lemma 2.8. [21] Let f and g be two nonconstant meromorphic functions sharing
(1,0). Then

Ni(r,1; f) < N(r,0; f) + N(r,00; f) + S(r, f).

Lemma 2.9. [2] Let f and g be two nonconstant meromorphic functions that share
(1,0). Then

(i) Ny>1(r,1;9) < N(r,0; f) + N(r,00; f) = Ne(r,0; f) + S(r, f);

(ii) Ng=1(r, 1 i) S N(r,0;9) + N(r,00;9) — Ng(r,0;¢") + S(r, 9),

where Ng(r,0; f') and Ng(r,0;9") are defined as in Lemma 2.6.
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Lemma 2.10. [3] Let F', G be two nonconstant meromorphic functions sharing
(1,2), (00,0) and H £0. Then

(i) T(r, F) < Na(r,0; F) + No(r,0; G) + N(r,00; F) + N (r,00; G) + N, (r,00; F, G) —
m(r,1;G) — Ng’(r7 1;F) = Np(r,1;G)+ S(r, F) + S(r, G);

(ii) T(r,G) < No(r,0; F)+ Na(r,0; G)+ N (r,00; F)+N(r,00; G)+ N (r, 00; F, G) —
m(r,1;F) — N®(r,1;G) = N(r,1; F) + S(r, F) + S(r, G).

Lemma 2.11. Let F', G be two nonconstant meromorphic functions sharing (1,1),
(00,0) and H £ 0. Then

(i) T(r, F) < Na(r,0; F)+ Na(r, 0; G)—i—%ﬁ(r, 00; F)+N(r,00; G)+ N, (r,00; F,G)+
AN(r,0;F)+ S(r,F)+ S(r,G).

(it) T(r, G) < Na(r,0; F)+Na(r,0; G)+N(r,00; F)+2N(r, 00; G)+N.(r, 00; F, G)+
AN, 0;G) + S(r,F) + S(r,G);

Proof. We prove (i) only since the proof of (ii) is similar. Since F', G share (1,1),

N;(r, 1;F) = N(r,1; F |=1). By the second fundamental theorem of Nevanlinna
we have

T(r,F) < N(r,0;F) 4+ N(r,00; F) + N(r,1; F) — No(r,0; F') + S(r, F)  (2.3)
and
T(r,G) < N(r,0;G) + N(r,00;G) + N(r,1;G) — No(r,0;G") + S(r,G), (2.4)
where No(r,0; F’) and No(r,0;G’) are defined as in Lemma 2.2. Since
N(r,1;F)+ N(r,1;G) < N(r,1; F |= 1) +NJ(E2(T,1;F) + Np(r,1; F)
+ Np(r,1;G) + N(r, 1;G),
using Lemmas 2.1, 2.2, 2.5 and 2.6 we obtain
N(r,1;F)+ N(r,1;G) < N(r,0; F |>2) + N(r,0; G |> 2) + N.(r,00; F, G)
+2N.(r,1; F,G) + NJ(;(T, ;F)+ N(r,1;G)
+ No(r,0; F') + No(r, 0; G)
SN(r,0;F > 2) + N(r,0;G [> 2) + N (r,00; F, G)
+ Npso(r,1;G) +T(r,G) + No(r,0; F') + No(r,0; G")
<N(r,0; F [>2) 4+ N(r,0;G |>2) + N.(r,00; F, G)
+ %W(T,O; F)+ %N(n o0 F) +T(r,G)
+ No(r,0; F') + No(r,0; G").
Using (2.3) and (2.4) we obtain from above
T(r,F) < No(r,0; F) + No(r,0; G) + ;N(r, 00; F) 4+ N(r,00; G)

_ 1
+ N (r,00; F,G) + §N(7”,0;F) +S(r, F)+ S(r,G).
This completes the proof of the lemma. O

Lemma 2.12. Let F, G be two nonconstant meromorphic functions sharing (1,0),
(00,0) and H # 0. Then
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(i) T(r, F) < No(r,0; F)4+No(r,0; G)+3N(r, 00
2N(r,0; F) + N(r,0;G) + S(r, F) + S(r,G).
(ii) T(r,G) < No(r,0; F)+Na(r,0; G)+2N (r, 00
N(r,0; F) +2N(r,0;G) + S(r, F) + S(r,G);

F)+2N(r,00; G)+N.(r,00; F,G)+

+3N(r,00; G)+N,(r,00; F,G)+

Proof. We prove (i) only since the proof of (ii) is similar. Since

N(r,1;F)+ N(r,1;G) < Né)(r, L F) —|—N,(E2(T, 1, F)+ Np(r,1; F)
+Ni(r,1;G)+ N(r,1;G),
using Lemmas 2.1, 2.2, 2.7, 2.8 and 2.9 we obtain

N(r,1;F)+ N(r,1;G) < N(r,0; F |>2) + N(r,0;G |> 2) + N.(r,00; F, G)
+2N.(r,1; F,G) + N3 (r,1; F) + N(r, 1;G)
+ No(r,0; F') + No(r,0; G")
< N(r,0; F |[>2) + N(r,0; G |> 2) + N..(r,00; F, G)
+Npo1(r,1;G) 4+ Ngs1(r, 1, F) + Np(r, 1, F) + T(r,G)
+ No(r,0; F') + No(r,0; G")

< N(r,0;F |>2)+ N(r,0;G |>2) + N.(r,00; F,G)

+2N(r,0; F) + N(r,0; G) + 2N (r,00; F) + N(r, 00; G)
+ T(Tv G) + NO(T7 07 F/) + NO(Tv 07 GI)
Using (2.3) and (2.4) we obtain from above

T(r,F) < No(r,0; F) + No(r,0; G) + 3N (r,00; F) + 2N (r,00; G) + N.(r,00; F, G)
+2N(r,0; F) + N(r,0;G) + S(r, F) + S(r, G).

This completes the proof of the lemma. (|

Lemma 2.13. [10, 20] Let f be a transcendental meromorphic function, and let

a1(2), az(2) be two distinct meromorphic functions such that T'(r,a;(2)) = S(r, f),

1=1,2. Then

T(’/‘,f) < N(r,oo,f) +N(’/‘,a1;f) —‘rW(T,CLg;f) +S(’I",f)

Lemma 2.14. Let f and g be two transcendental meromorphic (entire) functions
n k

and let n, k be two positive integers. Suppose that F} = w and Gy =

%Zg))(’“) where P(z) be defined as in Theorem H. If there exist two nonzero con-

stants ¢ and cy such that N(r,c1; Fy) = N(r,0;Gy) and N(r,co;G1) = N(r,0; F}),

thenn <3k+m+3 (n <2k+m+2).

Proof. We prove the case when f and g are two nonconstant meromorphic functions.
The case when f and g are two nonconstant entire functions can be proved similarly.
By the second fundamental theorem of Nevanlinna we have

T(r,Fy) < N(r,0; Fy) + N(r,00; F1) + N(r,cy; F1) + S(r, F})

_ _ _ 2.5
< N(r,0;Fy) + N(r,0;G1) + N(r,00; Fy) + S(r, Fy). (2:5)
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By (2.1), (2.2), and Lemma 2.3 we obtain

(2.5)
(n+m)T(r, f) < T(r,F1) — N(r,0; F) + Npy1(r,0; f*P(f)) + O{logr} + S(r, f)

< N(r,0;G1) + Niya(r,0; f* P(f)) + N(r, 005 ) + Oflogr} + S(r, f)
< N1 (r,0; f*P(f)) + Niya (1,05, 9" P(g)) + N(r, 005 f)
+ kN (r,00;9) + O{logr} + S(r, f) + S(r, g)
<(k4+m+2)T(r, f)+ 2k +m+ 1)T(r,g)
+ O{logr} + S(r, f) + S(r, g).
(2.6)
Similarly we obtain
(n+m)T(r,g) < (k+m+2)T(r,9)+ 2k +m+1)T(r, f) 27)

+ O{logr} + S(r, f)+ S(r, 9).
Since f and g are transcendental meromorphic functions, we have
T(r,z) =o{T(r, f)} and T(r,z) = o{T(r,g)}. (2.8)
Hence from (2.6) and (2.7) we get
(n =3k =m=31{T(r,f) +T(r,g)} < S(r, f) + S(r,9),
which gives n < 3k + m + 3. This completes the proof of the lemma. ([
Proceeding as in the proof of Lemma 2.14 we get

Lemma 2.15. Let f and g be two transcendental meromorphic (entire) functions
and let n, k be two positive integers. Suppose that Fy = (f*P(f))*) and Gy =
(g"P(g))™®) where P(z) be defined as in Theorem H. If there exist two nonzero con-
stants dy and dy such that N(r,dy; Fy) = N(r,0; Ga) and N(r,ds; G2) = N(r,0; Fy),
thenn <3k+m+3 (n <2k+m+2).

3. PROOF OF THE THEOREM

Proof of Theorem 1.1. We consider F(z) = f*P(f) and G(z) = ¢"P(g). Then by
Lemma 2.13 we have

T (r, F(k)) <N (r,O; F(k)) +N (r, 0; F(k)> +N (r, z; F(k)) + S(r, F).
Using (2.1) and the above inequality we obtain
(n+m)T(r, £) ST (1, F9) =N (5,0, F9) 4+ Neya (7, 0; F) + S0, )
<N (r, 00; F(k)) +N (r,z; F(k)) + Nig1(r,0; F) + S(r, f)
< (k;+m+2)T(r,f)+N(r 5 F0) 4 S(r, /).

Since n > k + 3, from this we can say that F(*) = (f*P(f))*) has infinitely many
fixed points. O
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Proof of Theorem 1.2. We consider F(z) = w and G(z) = %zg))(k).
Then F(z), G(z) are transcendental meromorphic functions that share (1,7) and f,
g share (00, 0). We assume that H # 0. Then from Lemma 2.3 and (2.1) we obtain

Na(r,0:F) < Nz (r.05 (/" P(1)®) + S(r. )

< T (n (/" PUN®) = (0 m)T(, f) + Newsr,0/*P(f)) + S(r. f
<T(r,F)—(n+m)T(r,f) + Ngyo(r,0; f*P(f)) + O{logr} + S(r, f).
(3.1)
In a similar way we obtain

Na(r,0;G) < T(r,G) — (n+ m)T(r,g) + Nrt2(r,0; " P(g)) + O{logr} + S(r, g).

(3.2)

Again by (2.2) we have
NQ(rv(); F) < kﬁ(?", 003 f) + Nk+2(r’0; fnP(f)) + S(T’ f) (33)
Ny(r,0;G) < kN(r,00;9) + Niya(r,0;g" P(g)) + S(r, g). (3.4)

From (3.1) and (3.2) we get
(n+m{T(r, f) +T(r,g)} <T(r,F) +T(r,G) + Ny12(r,0; f" P(f))
+ Nk-‘rQ(Tv ngnP(g)) - NQ(Ta 0; F) - NQ(T7O; G) (35)
+ Oflogr} + S(r, f) + S(r, ).
Now we consider the following three cases.
Case 1. Letl > 2. Then using Lemma 2.10, (3.3) and (3.4) we obtain from (3.5)
(n+m){T(r, f) + T(r,g)} < Na(r,0; F) + No(r,0; G) + 2N (r,00; F) + 2N (r, o00; G)
+ 2N, (r,00; F,G) 4+ Nyya(r,0; f"P(f))
+ N;Hg(r,();g"P(g)) + O{IOgT} + S(T’ f) + S(T’ g)
< 2Ngga (7, 05 [ P(f)) 4 2Npt2(r, 05 " P(g))
+ (k+2)N(r,00; f) + (k +2)N(r,00;g) + 2N 1,(r, 00; F')
+ 2N (r,00;G) + O{logr} + S(r, ) + S(r,9)
<2(k+m+2{T(r, /) + T(r,9)} + (k + 2)(N (r, 0; f)
+ N(r,00;9)) + 2(Nr(r,00; f) + Np(r,00;9))
+ Oflogr} + S(r, f) + S(r, 9).
Using (2.8) and noting that
NL(T, 03 f) + NL(Tv 03 g) < N(T7 003 f) = N(T7 03 g)y
we obtain from above
(n=2k=m—$){T(r, F)+T(r, )} < (k+3)(N(r. 0: f)+N(r, 005 9))+S(r. £ +5(r. ).

which leads to a contradiction as n > 3k +m + 7.
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Case 2. Letl = 1. Using Lemma 2.11, (3.8) and (8.4) we obtain from (3.5)
(n+m){T(r, f) +T(r,9)} < Na(r,0; F) + No(r,0;G) + gﬁ(n oo; F)
+ gﬁ(r, 00; G) + 2N (1, 00; F, G) + %N(T,O; F)

+ gmr, 0;G) + Nivo(r, 0; f*P(f)) + Ni1o(r, 03 g" P(g))
+ O{logr} + S(r, f) + S(r, )

< 2Npya (7,05 fPP(f)) 4 2N 42(r,0; g" P(g))

+ 5 Niea (0 £ P(P) + 5 N (09" P(o)

# (5 3) (V000i 1) 4 W ig) + 2N 065 )
+ Np(r,00;G)) + O{logr} + S(r, f) + S(r, g)

< <W> {T(r. f)+T(r,9)} + <32k N ;)

(N(r,00; f) + N(r,00;9)) + O{logr} + S(r, f) + S(r, g).
Using (2.8) we obtain

<H_5k+3m—|—9 3k 7

P 000+ T} < (54 7) (Voo )+ Nrocig)

+S(r, f) + S(r,9),
which contradicts our assumption that n > 4k + 3m/2 + 8.
Case 3. Let 1 =0. Using Lemma 2.12, (3.8) and (3.4) we obtain from (3.5)

(n+m){T(r, f) + T(r,9)} < Na(r,0; F) + No(r,0; G) + 5N (r,00; F) + 5N (r, 00; G)
+ 2N, (r,00; F,G) + 3N (r,0; F) + 3N(r,0; G)
+ Nig2(r,0; f*P(f)) + Niga(r,0; 9" P(g)) + Oflogr}
+ S(r, f)+ S(r,9)
< 2Ni42(r, 0; f*P(f)) + 2Ni42(r, 0; 9" P(9))
+ 3Nj41(r, 0; f" P(f)) + 3Ng41(r, 0, 9" P(g)) + (4k +5)
(N(r,00; f) + N(r,00;9)) + 2(Np(r,00; F) + N (r, 00; G))
+ O{logr} 4+ S(r, )+ S(r,g9)
< (5k +5m+T){T(r, f) + T(r,9)} + (4k + 6)(N(r, 00; f)
+ N(r,00;9)) + O{logr} + S(r, f) + S(r, g).

This gives by (2.8)

(n =5k —dm — T){T(r, f) + T(r,9)} < (4k + 6)(N(r,00; f) + N(r, 00; g))
+5(r, f) + 5(r,9),

contradicting the fact that n > 9k + 4m + 13.
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We now assume that H = 0. That is
F// 2F/ GI/ 2G/
(F-753)-(&-35)
Integrating both sides of the above equality twice we get
1 A
——=——-+18B 3.6
F-1 G-1 +5, (36)
where A(# 0) and B are constants.
Now we consider the following three subcases.

Subcase (i) Let B # 0 and A = B. Then from (3.6) we get

1 BG
_— = 3.7
F-1 G-1 (8.7)
If B = —1, then from (3.7) we obtain
FG =1,

ie.,
(f"P(£) P (g"P(g))*) = 2%

From our assumption it is clear that f # 0 and f # co. Let f(z) = €, where 3 is

a nonconstant entire function. Then by induction we get

(am T = t,.(8, 8", ..., BF))entmB (3.8)

(aof™)*) = to(8', 8", .. B0)e"?, (3.9)
where t;(8', 8", ..., %)) (i = 0,1,...,m) are differential polynomials in 8’, 8", . . .
, %) Obviously
(B, B, ., B 20
fori=0,1,2,...,m, and
(f"P(H® #0.
From (3.8) and (3.9) we obtain
N(r, 03t (8, 8", ..., B8N em™PE) 1 to(8, 87, ..., B8)) < N(r,0;22) = S(r, f).
(3.10)
Since 8 is an entire function, we obtain T'(r, 3)) = S(r, f) for j = 1,2, ..., k.
Hence T'(r,t;) = S(r, f) for i =0,1,2,...,m.

So from (3.10), Lemmas 2.3 and 2.13 we obtain

mT(r, ) = T(r,tme™ + ...+ t1€%) + S(r, f)

(T,O;tmemﬁ + ...+ tleﬂ) +N(r,0;tmemﬁ +o+ e+ to) + S(r, f)
<N, 03 tme™ D8 4+ t1) + S(r, f)

< (m=1T(r, f)+ 5. f),

which is a contradiction.

If B # —1, from (3.7), we have + = % and so N(r, H%;G) = N(r,0; F).

Now from the second fundamental theorem of Nevanlinna, we get

IA

N
N

_ _ 1 _
T(r,G) < N(r,0;G)+ N (r, HB;G) + N(r,00;G) + S(r,G)

< N(r,0;F) + N(r,0;G) + N(r,00; G) + S(r, G).
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Using (2.1 and (2.2) we obtain from above inequality
T(r,G) < Niya(r,05 f"P(f)) + kN (r,00; f) + T(r,G) + Nit1(r, 0, 9" P(g))
— (n+m)T(r,g) + N(r,00;9) + O{logr} + S(r, g).
Using (2.8) we obtain
m+m)T(r,g) < 2k+m+ 10T (r,f)+ (k+m+2)T(r,g9) + S(r,g).
Thus we obtain
(n =3k —m=31{T(r, /) +T(r,g)} <50, f) + S(r,9),

a contradiction as n > 3k +m + 7.

Subcase (ii) Let B # 0 and A # B. Then from (3.6) we get ' = %

and so N(r, B;ﬁfl;G) = N(r,0; F). Proceeding as in Subcase (i) we obtain a

contradiction.

Subcase (iii) Let B = 0 and A # 0. Then from (3.6) F = <=1 and
G=AF—(A-1). If A # 1, wehave N(r, 271, F) = N(r,0; G) and N(r,1-4; G) =

N(r,0; F). So by Lemma 2.14 we have n < 3k+m+3, a contradiction. Thus A =1
and hence ' = G. That is

™ (am f™ -1 ™ o ar f4a0)] P = [0 (am g +am—19™ .. +a1g+a0)] P,
Integrating we get
[ (@m ™ + a1 "7+ 4 anf 4 a)]* 7Y = [0 (amg™ + am1g™ T 4+
+arg + ao)l %Y + ey,

where ¢;_1 is a constant. If ¢,_1 # 0, from Lemma 2.15 we obtain n < 3k +m, a
contradiction. Hence c;_1 = 0. Repeating k-times, we obtain

F @ f™ + am-1 f™ o+ anf 4+ a0) = g™ (amg™ + am-19™ "+ arg + ao).
(3.11)
Let h = 5. If h is a constant, by putting f = gh in (3.11) we get

amgn+m(hn+m _ 1) 4 am_lgnerfl(thrmfl _ 1) 4o+ aogn(hn _ 1) _ O7

which implies 2% = 1, where d = (n + m,...,n+m —i,...,n + 1,n), am_; # 0
for some i = 0,1,...,m. Thus f(z) = tg(z) for a constant ¢ such that t¢ = 1,
d=Mm+m,..n+m—i,...n+1,n), amy_; #0 for some i =0,1,...,m.

If h is not a constant, then from (3.11) we can say that f and g satisfy the
algebraic equation R(f,g) = 0, where
R(z,y) = 2™ (amx™ + am_12™ 4 ... + ag) — Y (@my™ + @m_1y™ " + ... + ag).
This completes the proof of Theorem 1.2.
Using the arguments similar to the proof of Theorem 1.2, we can prove Corollary
1.3. Il
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