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ON DIFFERENCE FUZZY ANTI λ-IDEAL CONVERGENT

DOUBLE SEQUENCE SPACES

MANAL AL-LABADI, SARANYA S, YASMEEN, MOHAMMAD IMRAN IDRISI∗

Abstract. The concept of fuzzy sets was introduced by Zadeh as a means of

representing data that was not precise but rather fuzzy. Recently, Kočinac [24]
studied some topological properties of fuzzy antinormed linear spaces. This

has motivated us to introduce and study the fuzzy antinormed double sequence
spaces with respect to ideal by using a difference operator ∆n and prove some

theorems, in particular convergence and completeness theorems on these new

double sequence spaces.

1. Introduction

Fuzzy set theory was formalised by Professor Lofti Zadeh [34] at the University
of California in 1965. Thereafter, fuzzy set theory found applications in different
areas of mathematics and in other fields. The concept of fuzzy norm was introduced
by Katsaras [13] in 1984. In 1992, by using fuzzy numbers, Felbin [11] introduced
the fuzzy norm on a linear space. Cheng and Mordeson [3] introduced another idea
of fuzzy norm on a linear space, and in 2003 Bag and Samanta [1] modified the
definition of fuzzy norm of Cheng-Mordeson [3]. In [2] a comparative study of the
fuzzy norms defined by Katsaras [13], Felbin [11] and Bag and Samanta [1] was
given.

Later on, Jebril and Samanta [12] introduced the concept of fuzzy anti-norm
on a linear space depending on the idea of fuzzy anti norm, introduced by Bag
and Samanta [2]. The motivation of introducing fuzzy anti-norm is to study fuzzy
set theory with respect to the non-membership function. It is useful in the pro-
cess of decision making. Moreover, in 1981, the idea of difference sequence spaces
was introduced by Kizmaz (see[9]). Malkowsky et al.[31] introduced the difference
sequence spaces of order m. The generalized difference ideal convergence of real
sequences was introduced and studied by Hazarika[8] and Gumus and Nuray[7] inde-
pendently. Recently[10], Hazarika introduced the concept of generalized difference
ideal convergence in random 2-normed spaces.

The concept of convergence of a sequence of real numbers has been extended
to statistical convergence independently by Fast[6] and Schoenberg[33]. There has
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been an effort to introduce several generalizations and variants of statistical conver-
gence in different spaces ( see, for example, [5],[16],[17],[21],[22],[23] and references
therein ). One such very important generalization of this notion was introduced by
Kostyrko et al. [26] by using an ideal I of subsets of the set of natural numbers,
which they called I-convergence. After that the idea of I-convergence for double
sequence was introduced by Das et al. [4] in 2008 ( see also [30], [25],[20],[18],[19]
for ideal convergence in fuzzy context).

Now, we recall some terms and definitions which will be used throughout the
article.

Let X be a non empty set. A family I ⊂ 2X is said to be an ideal in X if
∅ ∈ I, I is additive i.e for all A,B ∈ I ⇒ A ∪ B ∈ I and I is hereditary i.e for all
A ∈ I,B ⊆ A ⇒ B ∈ I [14, 15]. A non empty family of sets F ⊂ 2X is said to be
a filter on X if for all A,B ∈ F implies A ∩B ∈ F and for all A ∈ F with A ⊆ B
implies B ∈ F . An ideal I ⊂ 2X is said to be non trivial if I 6= 2X ; a non trivial
ideal is said to be admissible if I ⊇ {{x} : x ∈ X} and is said to be maximal if
there cannot exist any non trivial ideal J 6= I containing I as a subset. For each
ideal I there is a filter F(I) called the filter associate with ideal I, that is

F(I) = {K ⊆ X : Kc ∈ I}, where Kc = X\K.

Throughout the article, I is an admissible ideal on N × N, and 2ω denotes the
class of all double real sequences. The spaces 2l∞, 2c and 2c0 are the Banach spaces
of bounded, convergent, and null double sequences of reals respectively with the
norm

‖x‖ = sup
i,j∈N

|xij |. (1.1)

Definition: 1.1 [28, 29] A double sequence x = (xij) ∈ 2ω is said to be I-
convergent to a number L, if for every ε > 0

{(i, j) : |xij − L| ≥ ε} ∈ I. (1.2)

In this case, we write I − limxij = L.
Definition: 1.2 [28, 29] A double sequence (xij) ∈ 2ω is said to be I−Cauchy

if for every ε > 0, there exist (m,n) ∈ N× N such that

{(i, j) : |xij − xmn| ≥ ε} ∈ I. (1.3)

Definition: 1.3 [28, 29] A double sequence (xij) ∈ 2ω is said to be I-bounded
if there exists M > 0 such that

{(i, j) : |xij | > M} ∈ I. (1.4)

Definition: 1.4 [27, 32] A binary operation � : [0, 1]× [0, 1] −→ [0, 1] is said to
be a continuous t-conorm if it satisfies the following conditions:
(a) � is associative and commutative,
(b) � is continuous,
(c) a � 0 = a for all a ∈ [0, 1],
(d) a � b ≤ c � d whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0, 1].
Some examples of continuous t-conorm are:
(i) a � b= a+b-ab (ii) a � b= max {a,b} (iii) a � b= min {a+b, 1}.
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Remark. (a) For any r1, r2 ∈ (0, 1) with r1 > r2 , there exist r3 ∈ (0, 1) such that
r1 > r4 � r2.
(b) For any r4 ∈ (0, 1), there exist r5 ∈ (0, 1) such that and r5 � r5 ≤ r4.

Recall now the notion of fuzzy antinorm in a linear space with respect to a
continuous t-conorm following.
Definition: 1.5[24] Let X be a real linear space and � a t-conorm. A fuzzy subset
ν : X × R → R of X × R is called a fuzzy antinorm on X with respect to the
t-conorm if, for all x, y ∈ X
(FaN1) for each t ∈ (−∞, 0], ν(x, t) = 1;
(FaN2) for each t ∈ (0,∞), ν(x, t) = 0 if and only if x = θ;
(FaN3) for each t ∈ (0,∞), ν(αx) = ν(x, |α|) if α 6= 0;
(FaN4) for all s, t ∈ R, ν(x+ y, s+ t) ≤ ν(x, s) � ν(y, t);
(FaN5) lim

t→∞
ν(x, t) = 0.

Note that if ν is the antinorm in the definition above, then ν(x, t) is nonincreasing
with respect to t for each x ∈ X. The followings are examples of fuzzy antinorms
with respect to a corresponding t-conorm and show how a fuzzy antinorm can be
obtained from a norm.
Example: 1.1 Let (X, ‖.‖) be a normed linear space and let the t-conorm � be
given by a � b = a+ b− ab. Define ν : X × R→ [0, 1] by

ν(x, t) =

{
0, if t > ‖x‖
1, if t ≤ ‖x‖.

Then ν is a fuzzy antinorm on X with respect to the t-conorm �. This antinorm ν
satisfies also the following:

(FaN6) For each t > 0, ν(x, t) < 1 implies x = θ.

Example: 1.2 Let (X, ‖.‖) be a normed linear space and consider the t-conorm �
defined by a � b = min{a+ b, 1}. Define ν : X × R→ [0, 1] by

ν(x, t) =

{
‖x‖

2t−‖x‖ , if t > ‖x‖
1, if t ≤ ‖x‖.

Then ν is a fuzzy antinorm on X with respect to the t-norm �. Note that this ν
satisfies the condition (FaN6) and also the following:
(FaN7) ν(x, .) is a continuous function on R and strictly decreasing on the subset
{t : 0 < ν(x, t) < 1} of R.

Definition: 1.6 [24] A sequence (xn)n∈N in a fuzzy antinormed linear space (X, ν, �)
is said to be ν-convergent to a point x ∈ X if for each ε > 0 and each t > 0 there
is n0 ∈ N such that

ν(xn − x, t) < ε for each n ≥ n0 (1.5)

Let (X, ν, �) be a fuzzy antinormed linear space with respect to an idempotent t-
conorm �, and let ν satisfy (FaN6). Then for each λ ∈ (0, 1) the function ‖x‖λ :
X → [0,∞) defined by

‖x‖λ = {t > 0 : ν(x, t) ≤ 1− λ} (1.6)
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is a norm on X and ϕ = {‖x‖λ : λ ∈ (0, 1)} is an asscending family of norms on
X. In this paper we generalize the definition of fuzzy anti-norm on a linear space.
Later on we study some relations and results on them.

2. Fuzzy(anti) ∆nIλ- convergence

Now, in this section we define fuzzy ∆nIλ-convergence, fuzzy ∆nIλ- anti- conver-
gence, fuzzy ∆nIλ- anti-Cauchy and fuzzy ∆nIλ- completeness for double sequences
with respect to an ideal I on N× N.

Definition: 2.1 Let X be a fuzzy antinormed double sequence space. A sequence
(xij) is said to be fuzzy ∆nIν-convergent to a point x ∈ X if for each ε > 0 and
each t > 0 the set

{(i, j) : ν(∆nxij − x, t) < ε} ∈ I. (2.1)

where,
∆nxi,j = (∆n−1xi,j −∆n−1xi,j+1 −∆n−1xi+1,j + ∆n−1xi+1,j+1)
(∆1xi,j) = (∆xi,j) = (xi,j − xi,j+1 − xi+1,j + xi+1,j+1),∆0x = (xi,j)
and this generalized difference double notion has the following binomial represen-
tation:

∆nxi,j =

n∑
k=0

n∑
l=0

(−1)k+l

(
n

k

)(
n

l

)
xi+k,j+l.

In this case, we write fuzzy Iν − lim ∆nxij = x and x is called a fuzzy ∆nIν-limit
of (xij).

Definition: 2.2 Let X be a fuzzy antinormed double sequence space and λ ∈ (0, 1).
A sequence (xij) ∈ X is said to be fuzzy ∆nIλ-convergent to x ∈ X if for all t > 0,
the set

{(i, j) : ν(∆nxij − x, t) < 1− λ} ∈ I. (2.2)

In this case we write fuzzy Iλ − lim ν(∆nxij − x, t) = 0 and x is called a fuzzy
Iλ-limit of (∆nxij).

Definition: 2.3 Let X be a fuzzy antinormed double sequence space and λ ∈ (0, 1).
A sequence (xij) ∈ X is said to be fuzzy ∆nIλ-anti-convergent in X if there exist
x ∈ X and M ∈ F(I) such that for all t > 0,

M = {(i, j) : ν(∆nxij − x, t) < 1− λ}. (2.3)

In this case, we write (∆nxij) anti-convergent to x and x is called a fuzzy Iλ-anti-
limit of (∆nxij).

Definition: 2.4 Let λ ∈ (0, 1). A sequence (xij) in a fuzzy antinormed double
sequence space X is said to be fuzzy ∆nIλ-anti-Cauchy if there exist numbers
m,n ∈ N and S ∈ F(I) such that for all t > 0,

S = {(i, j) : ν(∆nxij −∆nxpq, t) < 1− λ}. (2.4)

Definition: 2.5 A fuzzy antinormed double sequence space X is said to be fuzzy
∆nIλ-anti-complete, λ ∈ (0, 1), if for every fuzzy ∆nIλ-anti-Cauchy sequence in X
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is fuzzy ∆nIλ- anti-convergent in X.

Now, here we define two fuzzy antinormed double difference sequence spaces by
using operator ∆n as follows:

2FIν (∆n) = {(xij) ∈ 2`∞ : (i, j) : ν(∆nxij − x, t) < ε}; (2.5)

2FI0ν(∆n) = {(xij) ∈ 2`∞ : (i, j) : ν(∆nxij , t) < ε}. (2.6)

It is easy to check that these are really fuzzy antinormed double difference sequence
spaces defined by ∆n as difference operator. We also define an open ball with centre
x and radius r with respect to t as follows:

2B∆n

x (r, t) = {(yij) ∈ 2`∞ : (i, j) : ν(∆nxij −∆nyij , t) < r}. (2.7)

Theorem 2.1. In the fuzzy antinormed double difference sequence space 2FIν (∆n)
with respect to an idempotent t-conorm � satisfying (FaN6) and (FaN7) a sequence
is ∆nIν-convergent if and only if it is ∆nIλ-convergent for each λ ∈ (0, 1).

Proof. Let (xij) be a sequence in 2FIν (∆n) such that (xij) is ∆nIν- convergent to
x, i.e., for each t > 0

Iν − lim
i,j→∞

ν(∆nxij − x, t) = 0. (2.8)

Fix λ ∈ (0, 1). So, Iν − lim
i,j→∞

ν(∆nxij − x, t) = 0 < 1− λ. There exists a set P ∈ I

such that for each (m,n) ∈ P ,

ν(∆nxmn − x, t) < 1− λ (2.9)

Since ‖∆nxmn − x‖λ = ϕ{t > 0 : ν(∆nxmn − x, t) ≤ 1− λ}, we have
‖∆nxmn − x‖λ ≤ t for all (m,n) ∈ P . As t > 0, for each λ ∈ (0, 1), by (FaN6), we
have ‖∆nxmn − x‖λ I- converges to 0.

Conversely, suppose now that for each λ ∈ (0, 1), ‖∆nxij − x‖λ I-converges to
0. This means that for each λ ∈ (0, 1) and each ε > 0 there is a set Pλ ∈ I such
that, for each (i, j) ∈ P

‖∆nxij − x‖λ ≤ ε. (2.10)

Therefore,

ν(∆nxij − x, ε) = ϕ{1− λ : ‖∆nxij − x‖λ ≤ ε} (2.11)

implies ν(∆nxij −x, ε) ≤ 1−λ for each λ ∈ (0, 1) and each (i, j) ∈ P , which means

Iν − lim ν(∆nxij − x, ε) = 0 (2.12)

that is, (xij) is ∆nIν-convergent to x as i, j →∞. �

Theorem 2.2. Let 2FIν (∆n) be a fuzzy antinormed double difference sequence space
with respect to an idempotent t-conorm � satisfying (FaN6). Then fuzzy ∆nIλ-anti-
limit of a fuzzy ∆nIλ-anti-convergent sequence is unique.

Proof. Let (xij) ∈ 2FIν (∆n) be fuzzy ∆nIλ- anti convergent double sequence anti-
converging two distinct points x and y in 2FIν (∆n). This means that for each t > 0,
there exist x, y ∈ X and A1, A2 ∈ F(I) such that

A1 = {(i, j) : ν(∆nxij − x, t) < 1− λ}; (2.13)

A2 = {(i, j) : ν(∆nxij − y, t) < 1− λ}. (2.14)
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The set A = A1 ∩ A2 ∈ F(I) and by the assumption on � for each (i, j) ∈ A, we
have

ν(x− y, t) ≤ ν(∆nxij − x, t) � ν(∆nxij − y, t)
< (1− λ) � (1− λ) = 1− λ.

So we have
{(i, j) : ν(∆n(x− y), t) < 1− λ} ⊇ {(i, j) : ν(∆n(xij − x), t) < 1− λ}

∩ {(i, j) : ν(∆n(xij − y), t) < 1− λ} (2.15)

Thus, the sets on right hand side of the above equation (21) belong to F(I). There-
fore,
ν(∆n(x − y), t) < 1 − λ for each t > 0 by (FaN6) one obtains x − y = θ i.e.,
x = y. �

Theorem 2.3. Let 2FIν (∆n) and 2FI0ν(∆n) be a fuzzy antinormed double difference
sequence spaces with respect to an idempotent t-conorm � satisfying (FaN6). Then

(1) if Iλ − anti− lim ∆nxij = x and Iλ − anti− lim ∆nyij = y, then
Iλ − anti− lim ∆n(xij + yij) = x+ y

(2) if Iλ−anti− lim ∆nxij = x and r ∈ R, then Iλ−anti− lim r(∆nxij) = rx.

Proof. Since Iλ − anti− lim ∆nxij = x and Iλ − anti− lim ∆nyij = y, there exist
M1,M2 ∈ F(I) such that for all t > 0,

M1 = {(i, j) : ν(∆nxij − x,
t

2
) < 1− λ}; (2.16)

M2 = {(i, j) : ν(∆nyij − y,
t

2
) < 1− λ}. (2.17)

The set M = M1 ∩M2 ∈ F(I) and by the assumption on � for each (i, j) ∈M , we
have

ν(∆n(xij + yij)−∆n(x+ y), t) ≤ ν(∆n(xij − x),
t

2
) � ν(∆n(yij − y),

t

2
)

< (1− λ) � (1− λ) = 1− λ.
So we have
{(i, j) : ν(∆n(xij + yij)− (x+ y), t) < 1− λ} ⊇ {(i, j) : ν(∆n(xij − x), t2 ) < 1− λ}

∩ {(i, j) : ν(∆n(xij − y),
t

2
) < 1− λ} (2.18)

Thus, the sets on right hand side of the above equation (24) belong F(I). So we
have M = {(i, j) : ν(∆n(xij + yij) − (x + y), t) < 1 − λ} /∈ I which means that
Iλ − anti− lim ∆n(xij + yij) = x+ y.

(2) The fact Iλ − anti − lim ∆nxij = x implies that there exists M ∈ F(I) such
that for all t > 0 we have

M = {(i, j) : ν(∆nxij − x, t) < 1− λ} ∈ F(I). (2.19)

Therefore, for each (i, j) ∈M , we have

ν(r(∆nxij)− r(∆nx), t) = ν(∆nxij − x,
t

|r|
) < 1− λ.

We have

{(i, j) : ν(r∆nxij−r∆nx, t) < 1−λ} ⊇ {(i, j) : ν(∆nxij−∆nx, t) < 1−λ} (2.20)
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From this we get,{(i, j) : ν(r∆nxij − r∆nx, t) ≥ 1 − λ} /∈ I which shows that
Iλ − anti− lim r(∆nxij) = rx.

�

Theorem 2.4. Let 2FIν (∆n) be a fuzzy antinormed double difference sequence space
with respect to an idempotent t-conorm �. If (xij) ∈ 2FIν (∆n) is Iλ-anti-convergent
to x ∈ 2FIν (∆n), then ‖∆nxij − x‖λ is I-convergent to 0.

Theorem 2.5. Let 2FIν (∆n) be a fuzzy antinormed double difference sequence space
with respect to an idempotent t-conorm � satisfying (FaN6) and λ ∈ (0, 1). Then
every fuzzy ∆nIλ-anti-convergent double sequence (xij) ∈ 2FIν (∆n) is fuzzy ∆nIλ-
anti-cauchy.

Proof. Let (xij) ∈ 2FIν (∆n) be fuzzy ∆nIλ- anti-convergent double sequence. This
shows that there exists S ∈ F(I) such that for all t > 0 we have

{(i, j) : ν(∆nxij − x,
t

2
) < 1− λ} ∈ F(I). (2.21)

Therefore for each (i, j), (m,n) ∈M , we have

ν(∆nxij −∆nxmn, t) ≤ ν(∆nxij − x,
t

2
) � ν(∆nxij − x,

t

2
).

< (1− λ) � (1− λ) = 1− λ
which means that (xij) is fuzzy ∆nIλ-anti- Cauchy in 2FIν (∆n).

�

Theorem 2.6. Let 2FIν (∆n) be a fuzzy antinormed double difference sequence space
with respect to an idempotent t-conorm �. If 2FIν (∆n) is fuzzy ∆nIλ-anti-complete,
then 2FIν (∆n) is ∆nI- complete with respect to ‖.‖λ, λ ∈ (0, 1).

Proof. Let (xij) be fuzzy ∆nIλ- anti-Cauchy sequence in 2FIν (∆n). As 2FIν (∆n)
is fuzzy ∆nIλ-anti-complete then fuzzy ∆nIλ- anti-Cauchy sequence (xij) is fuzzy
∆nIλ- anti-convergent to x. By Theorem (2.4), this means that ‖∆n(xij − x)‖λ is
convergent to 0; i.e. (xij) is ∆nIλ-convergent to 0. Hence 2FIν (∆n) is Iλ-complete
with respect to ‖.‖λ, λ ∈ (0, 1). Therefore (2FIν (∆n), ‖.‖λ) is I- complete.

�
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