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THE EXISTENCE AND UNIQUENESS OF CONDITIONAL

EXPECTATION FOR INTEGRANDS WITH EXTENDED REAL

VALUES THROUGH MINIMAL ASSUMPTIONS

MEKDAD SLIME, MOHAMMED EL KAMLI, ABDELLAH OULD KHAL

Abstract. EVSTIGNEEV initially conceived the concept of establishing the

existence and uniqueness of conditional expectation for integrands with ex-

tended real values. The present paper introduces a distinctive perspective by
establishing the existence and uniqueness of the conditional expectation under

minimal assumptions and without imposing a priori regularity conditions on

the integrands, in contrast to previous works.

1. Introduction

It was I. V. EVSTIGNEEV [1] who first had the idea of obtaining the existence
and uniqueness of conditional expectation for integrands with extended real val-
ues defined on the product of measurable spaces. The lack of clear explanations
for certain points in his proof, coupled with insufficient conditions to guarantee
uniqueness, generated controversy surrounding his paper. This issue was further
addressed by A. DERRAS [2] and C. CASTAING F. EZZAKI [3], specifically ex-
amining positive integrands defined on the product of spaces, where the second
space is Souslinien. Thus, it was crucial to clarify the situation, leading us to
present a proof of existence utilizing the EVSTIGNEEV method, supported by
different compelling arguments. For uniqueness, we give characteristic conditions
in the case where the second space satisfies projection-selection properties (VON
NEUMANN & R. J. AUMANN type) for the sub-σ-field. We conclude this study
by examining the scenario of a valued integrand in a separable reflexive Banach
space.

Our objective is to demonstrate the existence and uniqueness of the conditional
expectation (under minimal assumptions), even in the absence of a priori regularity
conditions imposed on the integrands. (Contrary to the works of L. THIBAULT
[4, 5] and V. JALBY [6]).

The remainder of the paper is organized as follows; In Section 2, some prelim-
inaries on the P-discrete closure of decomposable are shown. In Sections 3, we
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established the existence and uniqueness of the conditional expectation for inte-
grand with extended real values, without imposing a priori regularity conditions on
the integrands. In Sections 4, we treated the vector case. Section 5 is intended to
justify sections 3 and 4.

2. Preliminaries on the P-discrete closure of decomposable

Let (Ω,B,P) be a probabilistic space and (X,T) a measurable space, we note
L0
X(B) the set of maps defined on Ω with values in X which are (B,T)-measurable;

we equip L0
X(B) with the P-discrete topology (corresponding to the topology induced

by the discrete convergence), this is the topology induced by the following semi-
metric: dP : (u, v) ∈ L0

X(B)× L0
X(B)→ P({u 6= v}).

A subset D of L0
X(B) is a decomposable (respectively σ-decomposable) if it verifies:

∀(u, v) ∈ D2,∀B ∈ B : u1B + v1Bc ∈ D, (Respectively for all (un)n ∈ DN, and all
(Bn)n a B-partition of Ω;

∑
n un1Bn

∈ D).

The P-discrete closure D of D can be characterized in different ways as shown by
the following result:

Lemma 2.1. Let D be a non-empty decomposable of L0
X(B), we consider the fol-

lowing sets:

Dess := {u ∈ L0
X(B)/Ω is the essential union of {u = v} when v ∈ D}

Dσ := {u ∈ L0
X(B)/u =

∑
n un1Bn with (un)n ∈ DN and (Bn)n a B−partition of Ω}

Then D = Dess = Dσ.

Remark. Dσ is the set of maps which coincide P-almost surely with an element
of the σ-decomposable generated by D. In particular when D is the decomposable
generated by a non-empty subset K of L0

X(B), then any element u of D coincides
P-almost surely with a map of the type

∑
n un1Bn where (un)n is a sequence of K

and (Bn)n is a B-partition of Ω.

Proof of Lemma 2.1:
We show the following inclusions: Dess ⊆ D ⊆ Dσ ⊆ Dess.
(1) Let us show first that, Dess ⊆ D:

If Ω
Pas

= ∪v∈Dess
{u = v}, then there exists a sequence (vn)n of elements of D such

that: Ω \ ∪n{u = vn} has zero probability.
Let’s pose: B0 = {u = v0} ∪ (Ω \ ∪n{u = vn}), u0 = v0 and for n ≥ 1,
Bn = {u = vn} \ ∪k<n{u = vk} and un =

∑
k<n vk1Bk

+ vn1(∪j<nBj)c , then (Bn)n
is a B-partition of Ω. As D is decomposable, un is still an element of D and by
construction, we obtain:

{u = unk
} ⊆ (∪k≤nBk)c ∪ (Ω \ ∪k≤n{u = unk

})
then, P({u = unk

}) ≤ 1−P(∪k≤nBk)+1−P(∪k≤n{u = unk
}) −→ 0 when n→ +∞,

hence, the sequence (un)n converges P-discretely to u, which shows the inclusion.
(2) Let us show that, D ⊆ Dσ:
Let u ∈ D; there exists a sequence (un)n of elements of D such as:
P({u = unk

}) −→ 0 when n → +∞. We can then extract a subsequence (unk
)

satisfies P({u = unk
}) ≤ 1

2k for all integer k.
Let: Ωm = ∩m≥k{u = unk

} for all integer m, then Bm = Ωm \ Ω(m−1) for m ≥ 1
and B0 = Ω0. By construction, the Bm are disjoint two by two, moreover, on Bm, u
and unm

coincide, consequently: u =
∑
m unm

1Bm
+ u1Ω\∪mBm

. It suffices then to
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verify that Ω \ ∪̊mBm has zero probability. Since P(Ω \ ∪mBm) = P(Ω \ ∪↑mBm) =

inf↓m P((Ωm)c), with P((Ωm)c) ≤
∑
k≥n P{u 6= unk

} ≤
∑
k≥m

1
2k = 1

2(m−1) . Hence
the result.
(3) Let us show now that, Dσ ⊆ Dess:
If u coincide P-almost surely with a function of the type

∑
n un1Bn

, with
(un)n ∈ DN, then we have: Ω = ∪nBn ⊆ ∪n{u = un} ⊆ ∪v∈Dess

{u = v} Pas,
hence the result. �

For a set Γ ∈ B ⊗ T, we denote by L0
Γ(B) the set of B-measurable P-selections

of Γ; recall that u is a P-selection of Γ when: {ω ∈ Ω/(ω, u(ω)) /∈ Γ} has zero
probability.
From the previous lemma, it is clear that: D := L0∑(B) is a P-discretely closed

decomposable for all
∑
∈ B ⊗ T because D is σ-decomposable. However, a P-

discretely closed decomposable D is not necessarily the set of P-selections of a∑
∈ B⊗ T, it suffices to consider for example:

D = {u ∈ L0
X(B)/u = v Pas where v is at most countable image}

The following two results give elementary examples of P-discretely closed decom-
posable, which are representable in the previous sense.

Lemma 2.2. Let D1 and D2 be non-empty decomposables of L0
X(B) such as:

D1 = L0∑
1
(B) and D2 = L0∑

2
(B), with

∑
1 and

∑
2 belonging to B ⊗ T.The P-

discrete closure of the decomposable generated by D1∪D2 coincides with L0∑
1

⋃∑
2
(B).

Proof of Lemma 2.2:
L0∑

1

⋃∑
2
(B) is a discretely closed P-decomposable which contains L0∑

1
(B), L0∑

2
(B)

and D1 ∪ D2 as well as the closure of the decomposable generated by the latter.
Conversely, let u ∈ L0∑

1

⋃∑
2
(B).

Consider the following set: B1 := {ω ∈ Ω/(ω, u(ω)) ∈
∑

1} with u1 and u2 are two
arbitrary elements of D1 and D2 respectively.
U1 := u1B1

+u11(B1)c is a B-measurable P-selection of
∑

1 and U2 := u1B1
+u21(B1)c

is a B-measurable P-selection of
∑

2; by hypothesis, there exists a sequence (v1
n) of

elements of D1 and a sequence (v2
n) of elements of D2 converging P-discretely with

U1 and U2 respectively.
Let vn = v1

n1B1 + v2
n1(B1)c . By construction vn is an element of the decomposable

generated by D1 ∪D2 and it suffices to check that (vn) converges P-discretely to u
which results from the following inclusions:

{vn 6= u} = ({v1
n 6= u} ∩B1)∪̊({v2

n 6= u} ∩ (B1)c)

= ({v1
n 6= U1} ∩B1)∪̊({v2

n 6= U2} ∩ (B1)c)

⊆ {v1
n 6= U1} ∪ {v2

n 6= U2}.
Since, P({vn 6= u}) ≤ P({v1

n 6= U1}) + P({v2
n 6= U2}) −→ 0 when n → +∞, then

P({vn 6= u}) −→ 0 when n→ +∞. Hence the result.

Lemma 2.3. Let g : Ω × X −→ R+ ∪ {+∞} B ⊗ T-measurable. The set of B-
measurable P-selections of the domain of g is equal to the P-discrete closure of the
domain of its integral functional as soon as the latter is non-empty.
Recall that the integral functional associated with g is defined by:

Ig : u ∈ L0
X(B) −→

∫
Ω

g(ω, u(ω))dP(ω)
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We will note ΛB
g its domain, i.e. ΛB

g = {u ∈ L0
X(B)/Ig < +∞}.

Remark. The following inclusion ΛB
g ⊆ L0

dom(g)(B) is always true, but it can be

strict if ΛB
g is empty; it suffices for example to consider g independent of

x : (ω, x) ∈ Ω× X −→ g(ω, x) = α(ω), where α is B-measurable with finite positive
values P-almost surely and it is not integrable.

Proof of Lemma 2.3:
L0
dom(g)(B) is a P-discretely closed decomposable, it contains ΛB

g and then its P-

almost closure.
Conversely, if u is a B-measurable P-selection of the domain of g then,
N := Ω \ ∪↑n{g(u) ≤ n} has zero probability, so consider the following B-partition
(Bn)n defined by: for n ≥ 1, Bn = {(n− 1) < g(u) ≤ n} and B0 = {g(u) ≤ 0} ∪N .
If u∞ is an arbitrary element of ΛB

g then,
u =

∑
n(u1Bn

+ u∞1(Bn)c)1Bn
. According to Lemma 3.1, it suffices to check that

u1Bn
+ u∞1(Bn)c is an element of ΛB

g for all integer n:∫
Ω

g(u1Bn
+ u∞1(Bn)c)dP =

∫
Ω

g(u)1Bn
dP +

∫
Ω

g(u∞)1(Bn)cdP

≤ n+

∫
Ω

g(u∞)dP < +∞

3. Conditional expectation for integrand with extended real values

Let (Ω,A,P) be a probability space, B is a sub-σ-field of (X,T) a measurable
space. For all f : Ω × X −→ R A ⊗ T-measurable (R is equiped with its Borel
σ-field) and for all u : Ω −→ X (A,T)-measurable we denote by f(u) the function
A-measurable defined by: f(u) : ω ∈ Ω −→ f(ω, u(ω)) and by ΛA

f (respectively ΛB
f )

the set of maps u : Ω −→ X (A,T)-measurable (respectively (B,T)-measurable)
such as f(u) are P-integrable.
When f is positive, ΛA

f is the domain of the integral functional associated with f

and it is a decomposable of L0
X(A).

3.1. Definition of the conditional expectation. .
Let f : Ω × X −→ R A ⊗ T-measurable. For all u ∈ L0

X, the positive part
(f(u))+ (respectively negative (f(u))−) of f(u) admits a unique (for P-almost surely
equality) B-conditional expectation EB((f(u))+) (respectively EB((f(u))−)) ([7],
section I-2.9).
In particular, if u ∈ ΛB

f+ ∪ ΛB
f− then at least one of the functions (f(u))+ and

(f(u))− is P-integrable and EB((f(u))+)−EB((f(u))−) is the unique (for P-almost
surely equality) B-conditional expectation of f(u).
We call conditional expectation of f any map g : Ω × X −→ R B ⊗ T-measurable
such as: ∀u ∈ ΛB

f+ ∪ ΛB
f− : g(u) = EB(f(u))Pas.

Lemma 3.1. If (fn)n is an increasing sequence of A⊗T-measurable functions with
extended positive real values such that, for all n, fn admits a conditional expectation
gn then supn(gn) is a conditional expectation of supn(fn).

Remark. If in all generality, we can verify that supngn is a conditional expectation
of supnfn it seems on the other hand that without the projection theorems (see (H)
paragraph 2.2) we cannot a priori choose the sequence (gn)n increasing.
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Proof of Lemma 3.1:
Let u ∈ L0

X(B). According to ([7], section 12-10), we have:

EB(sup↑n(fn)) = sup↑nEB(fn) Pas
For each integer n, EB(fn(u)) and gn(u) coincide P-almost surely; the countable
union of negligible being still negligible, we deduce that EB(sup↑n(fn(u))) and
supngn(u) coincide P-almost surely.

3.2. Existence of conditional expectation.

Theorem 3.2. (of existence)
Any function defined on Ω×X with extended real values A⊗T-measurable admits

a conditional expectation with respect to any sub-σ-field of A. [1]

Remark. The existence of a conditional expectation for functions with positive
values is directly deduced from the following result.

Lemma 3.3. Let H be a convex cone of extended-valued positive functions defined
on a set E satisfying the following properties:

(1) H contains the constants.
(2) H is stable under comparative bounded differences, i.e. for all f, g ∈ H

f ≤ g and g is bounded =⇒ g − f ∈ H
(3) H is stable by countable sup-increasing: ∀(fn)↑n ∈ H : sup↑n(fn)H.

If F is a non-empty ∩-stable subset of de P(E) such as H contains {1F : F ∈ F},
then H contains all measurable extended positive-valued functions for the σ-field
generated by F .

Remark. This result is the adaptation to the convex cone of functions with positive
extended real values of the method used by M. METIVIER [11] in the space of
bounded functions. We will see in the appendix that this is the particular case
(characteristic function) of a functional result obtained by combining the methods
of M. METIVIER and P. A. MEYER.

Proof of Theorem 3.2:
We apply Lemma 3.3 to E = Ω × X, H the set of all A ⊗ T-measurable positive
functions admitting conditional expectations with respect to the sub-σ-field B and
the set: F = {A×B : A ∈ A, B ∈ T}.
It is clear that H is a convex cone by comparative and sup-increasing bounded
differences according to Lemma 3.1 and the set: {1A×B : A ∈ A, B ∈ T} is con-
tained in H because 1A×B = 1A.1B admits EB(1A).1B as conditional expectation.
Moreover F is a ∩-stable generating subset of A ⊗ T; from Lemma 3.3, we then
deduce that H contains all positive functions A⊗ T-measurable.
In the case of a function of arbitrary sign, let g and h be conditional expectations
f+ and f− and φ an arbitrary B⊗T-measurable function. The function ψ defined
by:

ψ : (ω, x)→ f(ω, u(ω)) =

{
g(ω, x)− h(ω, x) ; if (ω, x) ∈ domg ∪ domh

ψ(ω, x) ; otherwise.

is a conditional expectation of f , indeed let u ∈ ΛB
f+ ∪ ΛB

f− then u ∈ ΛB
g ∪ ΛB

h and

is therefore P-selection of domg ∪ domh.

ψ(u) = g(u)− h(u)
Pas

= EB(f+(u))− EB(f−(u))
Pas

= EB[f+(u)− f−(u)]
Pas

= EB(f(u)).
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It clearly appears in the proof of the previous theorem that the choice of φ is totally
arbitrary; consequently if the projection on Ω of (domg∪domh)c is not P-negligible,
the uniqueness (for P-almost surely equality) of the conditional expectation fails;
contrary to what I. V. Evstigneev asserts ([1]; proposal 1, p. 517) the condition:

(H) :

 for all set
∑
∈ B⊗ T,Ω∑ := projΩ

∑
∈ B̃

and there exists
ξ ∈ L0

X(B) such as {ω ∈ Ω∑/(ω, ξ(ω)) /∈
∑
} is P− negligable.


(Where B̃ denotes the P-completed σ-field of B) is not sufficient for the conditional
expectation to be determined for P-almost surely equality.

3.3. Uniqueness of the conditional expectation. In what follows, we assume
that the considered sets satisfy the projection hypotheses (H).

Theorem 3.4. (of uniqueness)
Let f : Ω×X −→ R A⊗T-measurable such as the sets ΛB

f− and ΛB
f+ are nonempty.

A necessary and sufficient condition for f to have a unique conditional expectation
for P-almost surely equality is that the decomposable generated by ΛB

f− ∪ ΛB
f+ be

P-discreetly dense in L0
X(B).

In the case of uniqueness, we will denote EB(f) an arbitrary representative of the
class of conditional expectations of f .

Remark. .

(1) According to theorem 3.4, we can say that: EB(f) = EB(f+)− EB(f−).
(2) The union of the decomposable ΛB

f+ and ΛB
f− is not necessarily decompos-

able.
(3) If f is positive P-almost surely, ΛB

f− = L0
X(B) and by the previous theorem,

it is immediate that any positive A⊗T-measurable function admits a unique
conditional expectation EB(f) for P-almost sure equality.

Corollary 3.5. Let f : Ω× X −→ R A⊗ T-measurable such as ΛB
f+ is nonempty.

A necessary and sufficient condition for f to have a unique proper conditional
expectation is that ΛB

f− be P-discreetly dense in L0
X(B).

Proof of Corollary 3.5:
If ΛB

f− is P-discreetly dense in L0
X(B), then we have the same thing for ΛB

EBf− and

for ΛB
f− ∪ ΛB

f+ , f therefore admits a unique conditional expectation EB(f) with:

EB(f−) = (EB(f))−Pas and L0
X(B) coincides with L0

domΛB
EBf−

(B) from Lemma 2.3,

we deduce that projΩ{EB(f) = −∞} has zero probability.
Conversely, if f admits a unique proper conditional expectation then EB(f−) and
(EB(f))− coincide P-almost surely, therefore, EB(f−) is P-almost surely real-valued
and ΛB

f− = ΛB
EBf− is P-discretely dense in L0

X(B) by Lemma 2.3.

Proof of Theorem 3.4:
Sufficient condition of Theorem 3.4: If g and h are two conditional expecta-
tions of f , then by definition they satisfy for all u ∈ ΛB

f− ∪ ΛB
f+ :

g(u) = EBf(u) = h(u) Pas.
Their coincidence is then immediately deduced from the following result, which will
be useful to us later.
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Lemma 3.6. Let K be a subset whose generated decomposable is P-discretely dense
in L0

X(B). If g and h are two functions defined on Ω × X, B ⊗ T-measurable such
as g(u) and h(u) coincide P-almost surely for all u ∈ K, then g and h coincide
P-almost surely.

Proof of Lemma 3.6:
According to Lemma 3.1, any u ∈ L0

X(B) coincides P-almost surely with an appli-
cation of the form:

∑
n un1Bn , where (un) ∈ KN and (Bn) is a B-partition of Ω. By

hypothesis, g and h verify for any integer: g(un) = h(un) Pas, hence the following
equalities: g(u) =

∑
n g(un)1Bn

=
∑
n h(un)1Bn

= h(u) Pas, are satisfied out of a
P-negligible and this for all u ∈ L0

X(B).
As {g 6= h} belongs to B ⊗ T, we deduce from hypothesis (H) that its projection
on Ω has zero probability. This ensures the P-almost sure coincidence of g and h.
Necessary condition of Theorem 3.4: Let g be a conditional expectation of
f+ and h a conditional expectation of f−. If φ is an arbitrary B ⊗ T-mesarable
function, we have seen that:

ψ : (ω, x)→ f(ω, u(ω)) =

{
g(ω, x)− h(ω, x) ; if (ω, x) ∈ domg ∪ domh

ψ(ω, x) ; otherwise.

is a conditional expectation of f . Since f admits a unique conditional expectation,
domg∪domh coincides P-almost surely with Ω×X. Given Lemma 2.3, we have the

following equalities: L0
domg(B) = ΛB

f+ and L0
domh(B) = ΛB

f− . From Lemma 2.2, we

conclude that the P-discrete closure of the decomposable generated by ΛB
f− ∪ ΛB

f+

coincides with L0
X(B).

Proposition 3.7. Let Γ ∈ A⊗ T and FBΓ = {EB(1Γc) = 0}, the indicator of FBΓ
is the conditional expectation of the indicator of Γ and FBΓ is the essential union
of the elements

∑
of B⊗ T contained P-almost surely in Γ.

Remark. Contrary to the case treated by A. TRUFFERT in [8], paragraph 1.8.
p. 135 (see also [9], chap. 20), it seems that we cannot assert here that FBΓ is
contained P-almost surely in Γ for lack of knowing how to verify that the essential
union is a countable union of sets of the family.

Proof of Proposition 3.7:
As δΓ = sup↑nn1Γc , then EB(δΓ) = sup↑nnEB(1Γc) = δ{EB(1Γc )=0} Pas, which proves
the 1st statement.
Let

∑
∈ B⊗ T contained P-almost surely in Λ, suppose that

∑
doesnt contained

P-almost surely in FBΓ, then the probability of projΩ
∑

FBΓ is strictly positive,
and by hypothesis (H), there exists B ∈ B with strictly positive probability and
u ∈ L0

X(B) such as: ∀ω ∈ B : (ω, u(ω)) ∈
∑
\FBΓ which implies: δFBΓ(u)dP = +∞

and
∫
B
δΓ(u)dP = 0, which is in contradiction with the fact that δFBΓ is a conditional

expectation of δΓ.
Finally, let

∑
0 ∈ B⊗T containing P-almost surely in Γ, let us show by contradiction

that it still contains FBΓ.
If projΩ

∑
0 FBΓ has non-zero probability, then, there exists B0 ∈ B and u0 ∈ L0

X(B)
such as: ∀ω ∈ B0 : (ω, u0(ω)) ∈ FBΓ \

∑
0 (*).

Gr(u0) ∩B0 ×X belongs to B⊗ T and is continuous P-almost surely in Γ because:∫
B0
δΓ(u0)dP =

∫
B0
δFBΓ(u0)dP = 0. we deduce by hypothesis on

∑
0 that it is

continuous P-almost surely in the latter, which is in contradiction with (*).
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4. Conditional expectation of a vector integrand

In this paragraph, we consider (Ω,A,X) a probabilistic space, X a metrizable
sublinian space equipped with its Borel σ-field BX and Y a reflexive Banach space
separable from dual Y′ and from Borel BY.
Now let B be a sub-σ-field of A. We recall that if v is a map of Ω with values in
(A,BY)-measurable and Bochner-integrated, there exists a unique (P-almost surely)
map EB(v) (B,BY)-measurable such as: ∀B ∈ B :

∫
B
vdP =

∫
B
EB(v)dP (See [10]

Theorem 5.4). EB(v) is called the conditional expectation of v with respect to B.
Let Φ : Ω×X −→ Y be a vector A-integrand, i.e. (A⊗BX,BY)-measurable map. We
call conditional expectation of Φ with respect to B any B-integrand: Ψ : Ω×X −→ Y
such that Ψ(u) coincides P-almost surely with EB(Φ(u)) for all u ∈ ΛB

Φ, where ΛB
Φ

denotes the set of maps u ∈ L0
X(B) such that Φ(u) are Bockner-integrands. Note

that this set is a decomposable of L0
X. We define on Ω×X the following real-valued

A-integrands: ||Φ|| : (ω, x) ∈ Ω× X −→ ||Φ(ω, x)||Y and for all y′ ∈ Y′
< Φ, y′ >: (ω, x) ∈ Ω× X −→< Φ(ω, x), y′ >.

Theorem 4.1. Let Φ be a vector A-integrand such that ΛB
Φ is P-discretely dense

in L0
X(B).

Φ admits a unique (for P-almost surely equality) conditional expectation EB(Φ) with
respect to B which satisfies the following properties:

(1) ||EB(Φ)|| ≤ EB||Φ|| Pas
(2) ∀y′ ∈ Y′ :< EB(Φ), y′ >= EB(< Φ, y′ >) Pas

Proof of Theorem 4.1:
Let fΦ : (ω, x, y′) ∈ Ω × X × Y ′ −→< Φ(ω, x), y′ >∈ R a (A ⊗ BX ⊗ BY′ ,BR)-
measurable and for all u ∈ ΛB

Φ and all v′ ∈ L∞Y′ (B), f(ω, x) is P-integrable, conse-
quently ΛB

f contains ΛB
Φ×L∞Y′ (B), the latter being a P-discretely dense decomposable

in L0
X×Y′(B), according to Theorem 3.2 and Theorem 3.4, fΦ admits a unique (for

P-almost surely equality) conditional expectation EB(fΦ) with respect to B.
Let us start by establishing the following property:

∀ω ∈ Ω,∀x ∈ X, y′ ∈ Y′ −→ EB(fΦ(ω, x, y′)) is continuous linear.

For linearity, we proceed in the same way as A. TRUFFERT ([8], Proposition 1.6.2),
considering the three maps defined on Ω× [0, 1]× X× Y′ × Y′ as follows:

g(ω, α, x, y′1, y
′
2) = αy′1 + (1− α)y′2

h(ω, α, x, y′1, y
′
2) = αfΦ(ω, x, y′1) + (1− α)fΦ(ω, x, y′2)

i(ω, α, x, y′1, y
′
2) = αEB(fΦ(ω, x, y′1)) + (1− α)EB(fΦ(ω, x, y′2))

The linearity of EB(fΦ) (respectively fΦ) with respect to the last variable then re-
sults in the almost sure equality of the integrands (EBfΦ)og and i (respectively fΦog
and h). The hypotheses guarantee the uniqueness of the conditional expectations
of (EBfΦ)og and h, consequently they coincide P-almost surely with (EBfΦ)og and
i respectively, hence the equality almost sure of these.
The positive integrand ||Φ|| admits a unique conditional expectation with respect
to B which we will note ψ for simplicity. According to lemma 2.3, ψ is P-almost

surely with real values because: L0
domψ(B) = ΛB

ψ = ΛB
||Φ|| = L0

X(B).

To verify the continuity of EB(fΦ) with respect to the last variable, it suffices
to establish the following inequality: ∀ω ∈ Ω,∀x ∈ X,∀y′ ∈ Y′, ||y′|| ≤ 1 then,
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EB(fΦ(ω, x, y′)) ≤ ψ(ω, x). We proceed by contradiction assuming that the projec-
tion of:∑

:= {(ω, x, y′) ∈ Ω× X× Y′ : ||y′|| ≤ 1 and EB(fΦ(ω, x, y′)) > ψ(ω, x)}

has strictly positive probability; thanks to the selection theorems due to AUMANN
[15], there exists B ∈ B with strictly positive probability and (u, v′) ∈ L0

X×Y′(B)

such as: EB(fΦ(ω, u(ω), v′(ω))) > ψ(ω, u(ω)) and ∀ω ∈: ||v′(ω)|| ≤ 1.
Let Bn = {ω ∈ Ω : ψ(ω, u(ω)) ≤ n}, as ψ is P-almost surely with real values,
Ω \ ∪↑nBn has zero probability. We deduce the existence of an integer n0 for which
B ∩Bn0

still has strictly positive probability and
∫
B∩Bn0

ψ(u)dP < +∞.

Let u0 be an arbitrary element of ΛB
Φ and v0 an element of the unit ball of L∞Y′ (B),

then: (u, v′) = (u, v′)1B∩Bn0
+ (u0, v

′
0)1(B∩Bn0

)c ∈ ΛB
fΦ
× L∞Y′ (B).

Because,

|fΦ(u, v′)| ≤ ||Φ(u)||

and

∫
||Φ||(u)dP =

∫
B∩Bn0

ψ(u)dP +

∫
(B∩Bn0

)c
||Φ(u0)||dP < +∞

Consequently, we then obtain:∫
B∩Bn0

< Φ(u), v′ > dP =

∫
B∩Bn0

EB(fΦ(Φ(u), v′))dP >
∫
B∩Bn0

ψ(u)dP =

∫
B∩Bn0

||Φ(u)||dP

With ||v′|| ≤ 1 on B ∩Bn0
, and therefore a contradiction.

Even if it means replacing EB(fΦ) by 0 on N ×X×Y′ where N is a P-negligible, we
can assume that: y′ −→ EB(fΦ(ω, x, y′)) is continuous linear for all (ω, x) ∈ Ω×X.
Since Y is a reflexive Banach, then for all (ω, x) ∈ Ω × X, EB(fΦ(ω, x, .)) is repre-
sented by < ψ(ω, x), . > with ψ(ω, x) ∈ Y.
Thus defined on Ω × X, ψ is scalarly measurable and therefore (B ⊗ BX,BY)-
measurable given the separability assumption on Y. To conclude, we then use
the following result.

Lemma 4.2. Under the hypothesis of the previous theorem, a vector B-integrand
ψ is a conditional expectation of Φ if and only if fψ is a conditional expectation of
fΦ.

Proof of Lemma 4.2:
According to [14], chapter 3.3, we have for all u ∈ ΛB

Φ and all v0 ∈ L∞Y′ (B):

< EBΦ(u), v′ >= EB(< Φ(u), v′ >) Pas

If ψ is a conditional expectation of Φ, we then deduce that:

fψ(u, v′) = EB[(fΦ(u, v′)] = EB(fΦ(u, v′)) Pas

As ΛB
Φ ×L0

Y′(B) is P-discretely dense in L0
X×Y′(B) and according to Lemma 3.6, fψ

and E(fΦ) coincide P-almost surely.
Conversely, if fψ is a conditional expectation of fΦ then for all u ∈ ΛB

Φ and all
v′0 ∈ L∞Y′ (B) :< ψ(u), v′ >:= EB[(< Φ(u), v′ >)] =< EB(Φ(u)), v′ >. Hence ψ(u)
and EB(Φ(u)) coincide P-almost surely and ψ is a conditional expectation of Φ.
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5. Appendix:

In this part, we consider a set E, a family H of bounded positive real-valued
functions defined on the set E and C a non-empty subset of H.

Proposition 5.1. We suppose that H is a convex cone containing the positive
constants and satisfying the following properties:

(1) H is stable under comparative bounded differences, i.e.

∀f, g ∈ H, f ≤ g and g is bounded =⇒ g − f ∈ H.
(2) H is stable by countable bounded sup-increasing, i.e.

∀(fn)↑n ∈ H, sup↑n(fn) is bounded =⇒ sup↑n(fn) ∈ H.
And that C is a ∧ and ∨-stable convex cone containing the constant function
equal to 1. Then H contains all the measurable extended positive-valued
functions for the σ-field generated by C.

Remark. .

(1) As any extended real-valued function is the sup-increasing of its trunca-
tions, i.e. f = sup↑n(f ∧ n), we easily deduce from the previous proposition
that H contains all positive real-valued (respectively extended) functions if
condition (2) of Proposition 5.1. is replaced by:

∀(fn)↑n ∈ H, sup↑n(fn) < +∞ =⇒ sup↑n(fn) ∈ H (respectively sup↑n(fn ∧ n) ∈ H).

(2) The convex cone C generated by the set of characteristic functions based on
a subset F of P(E) is a lattice as soon as F is ∩-stable, since:∑
i∈I αi1Ai

∧
∑
j∈J βj1Bj

=
∑

(i,j)∈I×J(αi ∧ βj)1Ai∩Bj

and
∑
i∈I αi1Ai ∨

∑
j∈J βj1Bj =

∑
(i,j)∈I×J(αi ∨ βj)1Ai∩Bj .

In this case the σ-field generated by the elements of C is none other than
that generated by F , Lemma 3.3. is therefore easily deduced from the result
and the previous remark.

(3) We will see that the proof does not require the use of Zorn’s lemma, unlike
the following corollary which generalizes the result of C. DELLACHERIE
and P. A. MEYER ([13], Theorem 22.3, page 22).

Corollary 5.2. If H is stable by bounded countable sup-increasing and C is a con-
vex cone stable by compared differences, ∧-stable containing {1} then H contains
all functions with positive real values bounded measurable for the σ-field generated
by the elements of C.
H contains all measurable bounded positive real-valued functions for the array gen-
erated by the elements of C.

Proof of Corollary 5.2:
The set of convex cones stable by compared differences, ∧-stable containing C ∪{1}
and contained inH is an inductive set, Zorn’s theorem allows us to choose a maximal
element C∞ which is stable by bounded countable sup-increasing. Indeed, let (fn)n
be an increasing sequence of elements of C∞ which the supf has bounded values,
consider Cf the convex cone stable by compared differences, ∧-stable generated by
C∞ ∪ {f}, it suffices to verify that Cf is still contained in H.
If g ∈ C∞, we have: g + f = sup↑n(g + fn) and g ∧ f = sup↑n(g ∧ fn).
If g ≤ f , then: f−g = sup↑n(fn−g) and if f ≤ g, then: g−f = g−f0−sup↑n(fn−f0).



THE EXISTENCE AND UNIQUENESS OF CONDITIONAL EXPECTATION 39

Thanks to the properties of H, we verify that these functions thus constructed are
still elements of H.
It is clear that C∞ is ∨-stable since if f, g ∈ C∞ there exists R > 0 bounding f and
g and f ∨ g = R− (R− f) ∧ (R− g) ∈ C∞.
To conclude, we apply Proposition 5.1 to C∞ and C.

Proof of Proposition 5.1:
Let σ(C) the σ-field generated by the elements C. Any measurable function with
bounded positive real values is the sup of a sequence of elements of the convex cone
generated by {1A/A ∈ σ(C)}, it is therefore sufficient, taking into account the fact
that H is a convex cone, to verify that this set is contained in H, which amounts
to showing that σ(C) is included in the following set, D := {A ∈ P(C)/1A ∈ H}.
Let us first show that D is a Dynkin system:

(1) D is stable by compared differences:
If A,B ∈ D with: A ⊆ B then 1A and 1B ∈ H and 1A ≤ 1B , consequently:
1B\A ≤ 1B − 1A ∈ H from (1) and B \A ∈ D.

(2) D is stable under increasing countable unions:
If (An)n ∈ DN then 1∪↑nAn

= sup↑n1An ∈ H from (2)

On the other hand σ(C) is generated by:
F = {∩i∈I{fi ≥ ti}/fi ∈ C, ti ≥ 0 for i ∈ I with finite I} which is ∩-
stable and admits E for element, consequently σ(C) is none other than the
Dynkin system generated by F and it suffices to conclude to show that F
is contained in D:
Let I be finite, fi ∈ C and ti > 0({fi ≥ 0} = E) for all i ∈ I, we have:

f := 1∩i∈I{fi≥ti} = inf↓n(∧i∈I(1/ti)fi ∧ 1)n = 1− sup↑n(1− (∧i∈I(1/ti)fi ∧ 1)n).

Since C is a ∧-stable cone, ∧i∈I(1/ti)fi ∧ 1 is an element of C. To verify
that f ∈ H, it suffices to ensure that hn ∈ H as soon as h ∈ C.
However, since the function x ∈ R+ −→ xn is convex, it is the sup-countable
of continuous affine functions, consequently, hn is the sup-crescent of a
sequence of elements of C since the latter is a ∨-stable convex cone.
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