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ANALYSIS OF A FLUID QUEUE DRIVEN BY A QUEUE WITH

MULTIPLE EXPONENTIAL VACATIONS AND IMPATIENT

CUSTOMERS

S. SOPHIA, B. MUTHU DEEPIKA AND S. R. ANANATHA LAKSHMI

Abstract. This paper analyses a single buffer fluid queueing system where
the fluid flow into the buffer is regulated by a queue with impatient customers

and exponential vacations. The governing differential equations of the fluid

queueing system are solved using generating function method and continued
fraction methodology. Analytical expressions for the stationary distribution

of the buffer content are obtained in terms of Bessel functions and confluent

hypergeometric functions by employing Laplace transforms. The average buffer
content of the system under consideration is also obtained.

1. Introduction

Queues are an essential way of managing the flow of customers when the
resources are limited. In todays world, fluid queues play a significant role in
analysing resource sharing in computer systems and also in the performance
evaluation of computer communication networks. A fluid queue acts as an
input-output system where a continuous fluid (customers) get accumulated in the
buffer, wait for service and get depleted after being served. The accumulation and
depletion of the buffer are regulated by the background queueing system. In many
real time situations, the server cannot serve the customers continuously due to
several factors such as repair time, maintenance period, secondary jobs and so on
and these situations can be modeled as queueing systems with vacations. Sophia
and Muthu Deepika (2020) [11] used continued fraction methodology to find the
buffer content distribution of a fluid queue driven by a single server queue with
catastrophes. Horvath and Telek (2014) [7] derived the phase-type representation
of the sojourn time distribution of the fluid queues when the input and output
processes are dependent and independent and made a comparative study of the
two models.

Fluid queues driven by queueing systems with various vacation policies have
been studied by many authors. Deng et al. (1999) [6] studied an M/M/1 queue
with delayed vacation and obtained the steady-state probability distribution and
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associated performance measures. Mao et al. (2010) [9] analysed a fluid model
driven by an M/M/1 queue with single exponential vacation and obtained the
steady-state distribution of the buffer content and associated system performance
measures. On the other hand, Xu et al. (2013) [12] determined the stationary
distribution of the buffer content for a fluid model driven by an M/M/c queue with
working vacations using Laplace transforms. Ammar (2014) [3] considered a fluid
queue model driven by an M/M/1 queue with multiple exponential vacations and
derived an explicit expression for the stationary distribution of the buffer content
in terms of modified Bessel function of first kind, where the author used generating
function methodology. In 2017, Yu et al. [13] considered a fluid queue driven by a
multi-server queue with multiple working vacations and vacation interruption and
obtained the buffer content distribution by employing matrix-geometric method.

In many queueing situations, the customers leave the system or lost if service
has not begun within a limited time after their arrival. For instance, in a data
communication network with time-out protocol packets are lost if they experience
a long waiting line. It may lead to an adverse impact on the revenue generation of
a business organization. Yue et al. (2016) [14] considered an M/M/1 queue with
vacation and impatience timer, where the timer variable depends on the state of
the server. The authors analysed both multiple and single vacation scenarios and
obtained various performance measures for both vacation period and busy period.
For further information on vacation queueing systems, readers may refer to Zhang
and Gao (2020) [15] and Perel and Yechiali (2010) [10] and the references therein.

This paper studies a fluid queue driven by a queue with multiple exponential
vacations and impatient customers. This paper is sketched as follows: Section
2 provides the model description. In Section 3, the joint state probabilities
are determined by means of continued fraction method and generating function
method by employing Laplace transforms. Analytical results are obtained for
the buffer content distribution in terms of modified Bessel function and confluent
hypergeometric function. The mean buffer content is explicitly derived in Section
4. Definition of confluent hypergeometric function and its identities are given as
appendix.

2. Model Description

Transient analysis of an M/M/1 queue with impatient customers and multiple
vacations was studied by Ammar (2015) [4] and Altman and Yechiali (2006) [2]
considered the same queue and analysed its steady-state behavior. Here we consider
an infinite buffer fluid queue regulated by an M/M/1 queue subject to multiple
exponential vacations and customers impatience. We utilise the steady-state
probabilities obtained by Altman and Yechiali (2006) [2] for our analysis. In the
sequel, we describe the fluid queueing system as follows: In the fluid queueing
system under consideration, the server goes for a vacation when there are no
customers in the system and comes back to service when the vacation period ends.
After the vacation period, if there are customers in the system the server starts
the service otherwise goes for another vacation. We assume that the vacation
period follows exponential distribution with parameter η. The arrival pattern of the
customers follows Poisson process with rate λ. The service time of the customers are
exponentially distributed with mean 1/µ. In addition, every customer who arrives
during the vacation period activates the independent impatience timer which is
exponentially distributed with rate ξ. The impatient customer who activated the
independent timer completes his service if the server returns from vacation before
the timer period ends. In case, if the timer period expires when the server is on
vacation the customer abandons the queue and never returns. Also let us assume
that the random variables representing the service time, the inter-arrival time and
the vacation time are mutually independent. Let the customers are served on First



ANALYSIS OF A FLUID QUEUE DRIVEN BY A QUEUE 3

Come First Served (FCFS) basis. Let X(t) denote the number of customers in the
system of the M/M/1 queue at time t. Y (t) denote the state of the server such
that

Y (t) =

{
0, at time t, when the server is on vacation

1, at time t, when the server is busy.

It is clear that the process {(X(t), Y (t)), t ≥ 0} is a stochastic process with state
space S = {(0, 0)

⋃
(j, k), j = 1, 2, 3, . . . , k = 0, 1}. Further let {W (t), t ≥ 0}

denote the content of an infinite buffer at time t whose input and output are
regulated by the M/M/1 vacation queue with impatient customers. When there are
no customers in the M/M/1 vacation queue the buffer content of the fluid system
reduces with rate c0 < 0. On the other hand, the buffer occupancy increases with
rate c1 > 0 when customers are present in the system. Thus, the M/M/1 vacation
queue acts as a background queueing process and regulates the buffer content.
Thus,

dW (t)

dt
=


0, X(t) = 0,W (t) = 0

c0, X(t) = 0,W (t) > 0

c1, X(t) > 0.

Now the fluid queue driven by an M/M/1 queue with multiple vacations
and impatient customers is represented by the three-dimensional process
{(X(t), Y (t),W (t)), t ≥ 0}. When the buffer is infinite the fluid system is stable if
and only if

c0p0,0 + c1

∞∑
j=1

pj,0(x) + c1

∞∑
j=1

pj,1(x) < 0 and
λ

µ
< 1 (2.1)

As said earlier, the explicit expressions for the steady-state probabilities pj,k of the
background queueing process can be found by replacing γ as η in equations (2.17)
and (2.18) of Altman and Yechiali (2006) [2].
Let us denote the joint probability distribution function at time t as

F0,0(t, x) = P{X(t) = 0, Y (t) = 0,W (t) ≤ x}, x ≥ 0

and

Fj,k(t, x) = P{X(t) = j, Y (t) = k,W (t) ≤ x} , x ≥ 0, j = 1, 2, 3, . . . , k = 0, 1.

The governing Chapman-Kolmogorov forward differential-difference equations for
the model under consideration are

∂F0,0(t, x)

∂t
+ c0

∂F0,0(t, x)

∂x
= −λF0,0(t, x) + ξF1,0(t, x)

+µF1,1(t, x)

∂Fj,0(t, x)

∂t
+ c1

∂Fj,0(t, x)

∂x
= λFj−1,0(t, x)− (λ+ jξ + η)Fj,0(t, x)

+(j + 1)ξFj+1,0(t, x), j ≥ 1,

∂F1,1(t, x)

∂t
+ c1

∂F1,1(t, x)

∂x
= ηF1,0(t, x)− (λ+ µ)F1,1(t, x)

+µF2,1(t, x)

and
∂Fj,1(t, x)

∂t
+ c1

∂Fj,1(t, x)

∂x
= ηFj,0(t, x)− (λ+ µ)Fj,1(t, x)

+λFj−1,1(t, x) + µFj+1,1(t, x), j ≥ 2.
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When the system is in equilibrium, the process {(X(t), Y (t),W (t)), t ≥ 0} is stable
and we have

Fj,k(x) = lim
t→∞

P{X(t) = j, Y (t) = k,W (t) ≤ x}, x ≥ 0, j, k ∈ S

and also, the distribution function of the buffer content in steady-state is

F (x) = P [W ≤ x] = F0,0(x) +

∞∑
j=1

Fj,0(x) +

∞∑
j=1

Fj,1(x).

As t → ∞, Fj,k(t, x) = Fj,k(x) and
∂Fj,k(t,x)

∂t = 0 and therefore the governing
differential-difference equations reduce to

c0
dF0,0(x)

dx
= −λF0,0(x) + ξF1,0(x) + µF1,1(x), (2.2)

c1
dFj,0(x)

dx
= λFj−1,0(x)− (λ+ jξ + η)Fj,0(x)

+(j + 1)ξFj+1,0(x), j ≥ 1, (2.3)

c1
dF1,1(x)

dx
= ηF1,0(x)− (λ+ µ)F1,1(x) + µF2,1(x) (2.4)

and c1
dFj,1(x)

dx
= ηFj,0(x) + λFj−1,1(x)− (λ+ µ)Fj,1(x),

+µFj+1,1(x), j ≥ 2. (2.5)

Obviously the boundary conditions of the sytem under consideration are

Fj,k(0) = 0, j = 1, 2, 3, . . . , k = 0, 1, (2.6)

lim
x→∞

Fj,k(x) = pj,k, j, k ∈ S (2.7)

and F0,0(0) = A, 0 < A < 1 (2.8)

where the constant A is determined using (2.1).

3. Stationary buffer content distribution

In this section, the stationary distribution of the buffer content for the
state 0 is found using continued fraction methodology and we used generating
function method to find the buffer content distribution in state 1. Analytical
expressions are obtained for the joint probability distribution function F0,0(x) and
Fj,k(x), j = 1, 2, 3, . . . , k = 0, 1 in terms of modified Bessel function of first kind. In
the following sequel, we denote H∗(s) as the Laplace transform of H(.).

3.1. The buffer content distribution during busy period (Fj,1(x)).

Taking Laplace transform of the governing equations (2.2)− (2.5), we get

sc0F
∗
0,0(s)− c0F0,0(0) = −λF ∗0,0(s) + ξF ∗1,0(s) + µF ∗1,1(s), (3.1)

sc1F
∗
j,0(s)− c1Fj,0(0) = λF ∗j−1,0(s)− (λ+ jξ + η)F ∗j,0(s)

+(j + 1)ξF ∗j+1,0(s), j ≥ 1, (3.2)

sc1F
∗
1,1(s)− c1F1,1(0) = ηF ∗1,0(s)− (λ+ µ)F ∗1,1(s) + µF ∗2,1(s) (3.3)

and sc1F
∗
j,1(s)− c1Fj,1(0) = ηF ∗j,0(s) + λF ∗j−1,1(s)− (λ+ µ)F ∗j,1(s)

+µF ∗j+1,1(s), j ≥ 2. (3.4)
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Let us define the Generating function for F ∗j,1(s) as

Q∗(z, s) =

∞∑
j=1

F ∗j,1(s)zj .

Adding (3.3) and (3.4) and multiplying with zj yields

sc1

∞∑
j=1

F ∗j,1(s)zj = η

∞∑
j=1

F ∗j,0(s)zj + λ

∞∑
j=2

F ∗j−1,1(s)zj + µ

∞∑
j=1

F ∗j+1,1(s)zj

−(λ+ µ)

∞∑
j=1

F ∗j,1(s)zj

and thus

Q∗(z, s) =

η
c1

∑∞
j=1 F

∗
j,0(s)zj − µ

c1
F ∗1,1(s)

s−
[
−
(
λ+µ
c1

)
+ λz

c1
+ µ

zc1

] ,

which on inversion gives Q(z, x)

Q(z, x) =
η

c1

∫ x

0

∞∑
j=1

Fj,0(y)zje
−
(
λ+µ
c1

)
(x−y)

e

(
λz
c1

+ µ
zc1

)
(x−y)

dy

− µ
c1

∫ x

0

F1,1(y)e
−
(
λ+µ
c1

)
(x−y)

e

(
λz
c1

+ µ
zc1

)
(x−y)

dy. (3.5)

It is well known that the generating function of the modified Bessel function of the
first kind is

e(t+
1
t )(

x
2 ) =

∞∑
n=−∞

In(x)(t)n.

By means of the above equation, we obtain

e

(
λz
c1

+ µ
zc1

)
(x−y)

=

∞∑
j=−∞

Ij(a(x− y))(bz)j (3.6)

where a = 2
√
λµ
c1

and b =
√

λ
µ .

Substituting (3.6) in (3.5), Q(z, x) is obtained as

Q(z, x) =
η

c1

∫ x

0

∞∑
j=1

Fj,0(y)zje
−
(
λ+µ
c1

)
(x−y)

∞∑
j=−∞

Ij(a(x− y))(bz)jdy

− µ
c1

∫ x

0

F1,1(y)e
−
(
λ+µ
c1

)
(x−y)

∞∑
j=−∞

Ij(a(x− y))(bz)jdy.

Comparing the coefficients of zj and after some algebraic manipulation, we obtain

Fj,1(x) =
η

c1

∫ x

0

∞∑
m=1

Fm,0(y)Ij−m(a(x− y))bj−me
−
(
λ+µ
c1

)
(x−y)

dy

− µ
c1

∫ x

0

F1,1(y)e
−
(
λ+µ
c1

)
(x−y)

Ij(a(x− y))bjdy, j = 1, 2, 3, . . . .

(3.7)
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Now comparing the negative powers of z, the above equation holds for
j = −1,−2,−3, . . . with Fj,1(x) = 0. Employing I−j(a(x − y)) = Ij(a(x − y))
for j = 1, 2, 3, . . . , we get

η

c1

∫ x

0

∞∑
m=1

Fm,0(y)Ij+m(a(x− y))bj−me
−
(
λ+µ
c1

)
(x−y)

dy

− µ
c1

∫ x

0

F1,1(y)e
−
(
λ+µ
c1

)
(x−y)

Ij(a(x− y))bjdy = 0. (3.8)

Equations (3.7) and (3.8) lead to

Fj,1(x) =
η

c1

∫ x

0

∞∑
m=1

Fm,0(y)[Ij−m(a(x− y))− Ij+m(a(x− y))]bj−m

×e−
(
λ+µ
c1

)
(x−y)

dy, j = 1, 2, 3, . . . , (3.9)

where Ij(.) is the modified Bessel function of the first kind of order j. Thus,
equation (3.9) completely provides the buffer content distribution when there are j
customers in the system and the server is in busy period.

3.2. The buffer content distribution during the vacation period (Fj,0(x)).

Substituting the boundary condition (2.6) in (3.2) and after some algebra, we get

F ∗j,0(s)

F ∗j−1,0(s)
=

λ

sc1 + λ+ jξ + η − (j + 1)ξ
F∗j+1,0(s)

F∗j,0(s)

,

which on iteration gives a continued fraction expression as

F ∗j,0(s)

F ∗j−1,0(s)
=

λ

sc1 + λ+ jξ + η − (j+1)ξλ

sc1+λ+(j+1)ξ+η− (j+2)ξλ
sc1+λ+(j+1)ξ+η−...

. (3.10)

Using (A.4) the above continued fraction can be expressed as

1F1

(
j + 1; sc1+ηξ + j + 1; −λξ

)
ξ( sc1+ηξ + j)1F1

(
j; sc1+ηξ + j; −λξ

)
=

1

sc1 + λ+ jξ + η − (j+1)ξλ

sc1+λ+(j+1)ξ+η− (j+2)ξλ
sc1+λ+(j+1)ξ+η−...

.

Thus explicitly

F ∗j,0(s)

F ∗j−1,0(s)
=

(
λ
ξ

)
(
sc1+η
ξ + j

) 1F1

(
j + 1; sc1+ηξ + j + 1; −λξ

)
1F1

(
j; sc1+ηξ + j; −λξ

) (3.11)

which on iteration gives

F ∗j,0(s) = σ∗j (s)F ∗0,0(s) (3.12)

where σ∗j (s) =

(
λ
ξ

)j
∏j
i=1

(
sc1+η
ξ + i

) 1F1

(
j + 1; sc1+ηξ + j + 1; −λξ

)
1F1

(
1; sc1+ηξ + 1; −λξ

) .
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On inverting (3.12), we get

Fj,0(x) = σj(x) ∗ F0,0(x). (3.13)

3.3. The buffer content distribution during the vacation period when
there are no customers in the background queue (F0,0(x)).

From (3.1) F ∗0,0(s) can be rewritten as

F ∗0,0(s) =
1

(sc0 + λ)
[Ac0 + ξF ∗1,0(s) + µF ∗1,1(s)]. (3.14)

Substituting j = 1 in (3.9), we get

F1,1(x) =
η

c1

∫ x

0

∞∑
m=1

Fm,0(y)[Im−1(a(x− y))− Im+1(a(x− y))]b1−m

×e−
(
λ+µ
c1

)
(x−y)

dy. (3.15)

Laplace transform of the above equation gives

F ∗1,1(s) =
η

µ

∞∑
m=1

b−mF ∗0,0(s)σ∗m(s)

(
p−

√
(p2 − a2)

a

)m

where p =
(
s+ λ+µ

c1

)
. From (3.12), we get F ∗1,0(s) = σ∗1(s)F ∗0,0(s). Substituting

F ∗1,1(s) and F ∗1,0(s) in (3.14), F ∗0,0(s) modifies to

F ∗0,0(s) = Ac0

∞∑
q=0

1

(sc0 + λ)q+1

×
q∑
r=0

(
q

r

)[
η

∞∑
m=1

σ∗m(s)

(
p−

√
(p2 − a2)

ab

)m](q−r)
[ξσ∗1(s)]r.

Inversion of the above equation yields

F0,0(x) = A

(
µ

c1

) ∞∑
q=0

q∑
r=0

ξrηq−r
(
q

r

)
e
−
(
λ
c0

)
x

cq0

xq

q!
∗ σr1(x)

∗

{ ∞∑
m=1

b1−me
−
(
λ+µ
c1

)
x
[Im−1(a(x))− Im+1(a(x))] ∗ σm(x)

}∗(q−r)
(3.16)

where ∗ denotes the convolution and ∗(q − r) is the (q − r)th fold convolution.
Inversion of σ∗j (s) can be carried out by using the identities given in the appendix.
We found σ∗j (s) as

σ∗j (s) =

(
λ
ξ

)j
1F1

(
1; sc1+ηξ + 1; −λξ

) 1F1

(
j + 1; sc1+ηξ + j + 1; −λξ

)
∏j
i=1

(
sc1+η
ξ + i

) .
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Now we use (A.1) and (A.2) in
1F1(j+1;

sc1+η
ξ +j+1;−λξ )∏j

i=1(
sc1+η
ξ +i)

to invert σ∗j (s)

1F1

(
j + 1; sc1+ηξ + j + 1; −λξ

)
∏j
i=1

(
sc1+η
ξ + i

) =
1∏j

i=1

(
sc1+η
ξ + i

) ∞∑
n=0

(−λ)n

ξnn!

× (j + 1)(j + 2)(j + 3)...(j + n)(
sc1+η
ξ + j + 1

)(
sc1+η
ξ + j + 2

)(
sc1+η
ξ + j + 3

)
...
(
sc1+η
ξ + j + n

) .
It is evident that

1∏j+n
i=1

(
sc1+η
ξ + i

) =

j+n∑
i=1

(−1)i−1

(i− 1)!(j + n− i)!(sc1 + η + iξ)
. (3.17)

Hence
1F1(j+1;

sc1+η
ξ +j+1;−λξ )∏j

i=1(
sc1+η
ξ +i)

=

∞∑
n=0

(−λ)n

ξn−1n!

n∏
i=1

(j + i)

j+n∑
i=1

(−1)i−1

(i− 1)!(j + n− i)!(sc1 + η + iξ)
(3.18)

where we have used (3.17).

Now consider
(λξ )

j

1F1(1; sc1+η
ξ +1;−λξ )

,(
λ
ξ

)j
1F1(1; sc1+ηξ + 1; −λξ )

=

(
λ
ξ

)j
∑∞
n=0

(−λ)n
ξn−1n!

∏n
i=1(i)

∑n
i=1

(−1)i−1

(i−1)!(n−i)!(sc1+η+iξ)

(3.19)

=

(
λ
ξ

)j
∑∞
n=0 λ

nv∗n(s)

where v∗n(s) = (−1)n
ξn−1n!

∏n
i=1(i)

∑n
i=1

(−1)i−1

(i−1)!(n−i)!(sc1+η+iξ) , thus

1F1

(
1;
sc1 + η

ξ
+ 1;

−λ
ξ

)
=

∞∑
n=0

λnv∗n(s).

Let us rewrite the above equation as[
1F1

(
1;
sc1 + η

ξ
+ 1;

−λ
ξ

)]−1
=

∞∑
n=0

λnu∗n(s) (3.20)

where u∗0(s) = 1 and for n = 1, 2, 3, . . .

u∗n(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

v∗1(s) 1
v∗2(s) v∗1(s) 1
v∗3(s) v∗2(s) v∗1(s) 1

...
...

...
...

...
...

v∗n−1(s) v∗n−2(s) v∗n−3(s) v∗1(s) 1
v∗n(s) v∗n−1(s) v∗n−2(s) v∗2(s) v∗1(s)

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

n∑
i=1

(−1)i−1v∗i (s)u∗n−i(s).
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On inverting the above equation, we get

un(x) =

n∑
i=1

(−1)i−1vi(x) ∗ un−i(x)

where vn(x) =
(−1)n

ξn−1n!

n∏
i=1

(i)

n∑
i=1

(−1)i−1

c1(i− 1)!(n− i)!
e
−
(
η+iξ
c1

)
x
.

Substituting (3.18) and (3.19) in σ∗j (s), we obtain

σ∗j (s) =

(
λ

ξ

)j ∞∑
n=0

(−λ)n

ξn−1n!

n∏
i=1

(j + i)

j+n∑
i=1

(−1)i−1

(i− 1)!(j + n− i)!(sc1 + η + iξ)

×
∞∑
n=0

λnu∗n(s).

Inverting the above equation, σj(x) is obtained as

σj(x) =

(
λ

ξ

)j ∞∑
n=0

(−λ)n

ξn−1n!

n∏
i=1

(j + i)

j+n∑
i=1

(−1)i−1

c1(i− 1)!(j + n− i)!
e
−
(
η+iξ
c1

)
x

∗
∞∑
n=0

λnun(x).

4. Mean buffer content

In this section, the mean buffer content of the fluid queue fed by multiple
exponential vacations and impatient customers is obtained using Laplace-Stieltjes
transform. The cumulative distribution function of the buffer content is

F (x) = P [W ≤ x] = F0,0(x) +

∞∑
j=1

Fj,0(x) +

∞∑
j=1

Fj,1(x).

The Laplace transform of the above equation yields

F ∗(s) = F ∗0,0(s) +

∞∑
j=1

F ∗j,0(s) +
∞∑
j=1

F ∗j,1(s).

The Laplace-Stieltjes transform F̂ (s) is given by

F̂ (s) =

∫ ∞
0

e−sxdF (x) = sF ∗(s).

Substituting F ∗j,0(s) and F ∗j,1(s) in F ∗(s) gives

F̂ (s) = s

[(
1 +

∞∑
j=1

σ∗j (s) +
η

sc1

∞∑
j=1

σ∗j (s)− η

sc1

∞∑
m=1

σ∗m(s)

×

(
p−

√
(p2 − a2)

a

)m)
F ∗0,0(s)

]
.
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The mean of the buffer content E(W ) is

E(W ) = −dF̂ (s)

ds

∣∣∣∣
s=0

differentiating F̂ (s) with respect to s and setting s = 0 gives

E(W ) = − Aη2c0
c1

{ ∞∑
j=1

σ∗j (0)−
∞∑
m=1

σ∗m(0)

(√
µ

λ

)m}{ ∞∑
q=0

1

(c0 + λ)q+1

×
q∑
r=0

R[ξσ∗1(0)]r
{[
rσ∗1

′
(0)[σ∗1(0)]−1

]
−
[

(q + 1)c0
(c0 + λ)

]
+

[
R−2

× (q − r)
((

q

r

) ∞∑
m=1

(µ
λ

)m(
σ∗m
′
(0)− σ∗m(0)

mc1
(λ− µ)

))]}}

−
{
Ac0

∞∑
q=0

η

(c0 + λ)q+1

q∑
r=0

R[ξσ∗1(0)]r
{

1 +

∞∑
j=1

σ∗j (0) +
η

c1

×
∞∑
j=1

σ∗j
′
(0)

}
− η

c1

∞∑
m=1

σ∗m
′
(0)

(√
µ

λ

)m
− η

(λ− µ)

∞∑
m=1

mσ∗m(0)

×
(√

µ

λ

)m}
where R =

[(
q
r

)∑∞
m=1 σ

∗
m(0)

(
µ
λ

)m]q−r
,

σ∗j (0) =
[(λξ )j

∑∞
n=0

(−λ)n
ξn−1n!

∑j+n
i=1

(i)(−1)i
(η+iξ)

(
j+n
i

)
]

[
∑∞
n=0

(−λ)n
ξn−1n!

∑n
i=1

(i)(−1)i−1

(η+iξ)

(
n
i

)
]

and

σ∗j
′
(0) =

[(λξ )j
∑∞
n=0

(−λ)n
ξn−1n!

∑j+n
i=1

(i)(−1)ic1
(η+iξ)

(
j+n
i

)
]

[
∑∞
n=0

(−λ)n
ξn−1n!

∑n
i=1

(i)(−1)ic21
(η+iξ)2

(
n
i

)
]

−
[
∑∞
n=0

(−λ)n
ξn−1n!

∑n
i=1

(i)(−1)i
(η+iξ)

(
n
i

)
]

[
∑∞
n=0

(−λ)n
ξn−1n!

∑n
i=1

(i)(−1)ic21
(η+iξ)2

(
n
i

)
]2

×

[(
λ

ξ

)j ∞∑
n=0

(−λ)n

ξn−1n!

j+n∑
i=1

(i)(−1)ic1
(η + iξ)2

(
j + n

i

)]
.

To determine the constant A, consider the equation

c0
d

dx
F0,0(x) + c1

∞∑
j=1

d

dx
Fj,0(x) + c1

∞∑
j=1

d

dx
Fj,1(x) = 0.

Integrating the above equation from 0 to ∞, A can be obtained as

A = F0,0(0) =
p0,0(c0 − c1) + c1

c0
.
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Remark. When the impatient timer ξ = 0, our model reduces to a single server
fluid queue regulated by an M/M/1 queue with mutiple exponential vacations. By
definition,

1F1

(
j + 1;

sc1 + η

ξ
+ j + 1;

−λ
ξ

)
=

∞∑
k=0

(j + 1)k

( sc1+ηξ + j + 1)k

(−λξ )k

k!
.

When ξ = 0 the above equation reduces to

1F1

(
j + 1; sc1+ηξ + j + 1; −λξ

) ∣∣∣∣
ξ=0

=

∞∑
k=0

(j + 1)(j + 2)(j + 3) . . . (j + k)

(sc1 + η)k
(−λ)k

k!

=

(
sc1 + η + λ

sc1 + η

)−(j+1)

.

Similarly

1F1

(
1;
sc1 + η

ξ
+ 1;

−λ
ξ

) ∣∣∣∣
ξ=0

=
sc1 + η

sc1 + η + λ

Hence σ∗j (s) when ξ = 0 becomes

σ∗j (s)
∣∣
ξ=0

=
λj

(sc1 + η)j

(
sc1+η+λ
sc1+η

)−(j+1)

(
sc1+η

sc1+η+λ

)
=

(
λ

sc1 + η + λ

)j
.

Now, for ξ = 0 F ∗0,0(s) becomes

F ∗0,0(s)
∣∣
ξ=0

=
Ac0[sc1 + λ(1−R) + η]

(sc0 + λ)[sc1 + λ(1−R) + η]− ηλR
where

R =
sc1 + λ+ µ−

√
(sc1 + λ+ µ)2 − 4λµ

2λ

which is same as the equation (16) of Mao et al. (2010) [8]. Further in the
above obtained result, when we substitute η (vacation rate) = 0 the model under
consideration reduces to a single server fluid queue fed by an M/M/1 queue.

Application

The motivation of this fluid queueing model has vast applications in computer
systems and communication networks. For example, in online gaming data packets
are transmitted from the games server or host to the receiver (customers). Let the
arrival of the data packets follow Poisson process with rate λ and the service times
are exponenetially distributed with rate µ. The data packets are stored in a jitter
buffer, which is a temporary storage buffer used in packet-based networks. They
are mainly used to guarantee the packet continuity by controlling packet arrival
rates during network congestion. Let us assume that the data packets accumulate
in the jitter at a rate c1 > 0 and deplete from the jitter at a rate c0 < 0. Most of the
online games use UDP (User Datagram Protocol), which is the transport protocol
that facilitates the transmission of packets from the host to the destination and
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it is highly preferred because of its speed, but it is vulnerable to data loss. It is
common that the host sets a timer for a packet and sends it to the receiver. Let ξ
be the exponential timer set by the host and let the vacation periods of the server
are eponentially distributed with rate η. Sometimes the arriving packets during
the vacation period will be waiting for the server to get transmitted. If the server
did not return within the predetermined time period, the packets are dropped and
are not retransmitted. The above scenario can be modeled as a fluid queue with
multiple exponential vacations and impatient customers.

Appendix

The confluent hypergeometric function is defined by

1F1(a; c; z) = 1 +
a

c

z

1!
+
a

c

(a+ 1)

(c+ 1)

z2

2!
+ · · · =

∞∑
k=0

(a)k
(c)k

zk

k!
(A.1)

for z ∈ C, parameters a, c ∈ C (c, not a negative integer). Now (α)n, the
Pochhammer symbol is described as

(α)n =
Γ(α+ 1)

Γ(α− n+ 1)
, n = 0, 1, 2, . . . . (A.2)

We observe that

1F1(0; c; z) = 1.

The recurrence relation for the confluent hypergeometric function is given by

c(c− 1)1F1(a− 1; c− 1; z)− az1F1(a+ 1; c+ 1; z) = c(c− 1− z)1F1(a; c; z)

(see Abramowitz and Stegun [1] ).
The quotient of two hypergeometric functions may be expressed as continued
fractions. The following identity is obtained from Lorentzen and Waadeland [8]
and Andrews [5]:

1F1(a+ 1; c+ 1; z)

1F1(a; c; z)
=

c

c− z+
(a+ 1)z

c− z + 1+

(a+ 2)z

c− z + 2+
. . . , (A.3)

which can be rewritten as

c
1F1(a; c; z)

1F1(a+ 1; c+ 1; z)
− (c− z) =

(a+ 1)z

c− z + 1+

(a+ 2)z

c− z + 2+
. . . . (A.4)
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