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EXISTENCE RESULTS FOR SOLUTION OF FRACTIONAL

DIFFERENTIAL EQUATIONS IN ABSTRACT SPACES

GHAUS UR RAHMAN

Abstract. The paper explores sufficient conditions for the existence of weak

solution of the following fractional order differential equations in abstract
spaces, (

Dαm
w −

m−1∑
i=1

aiD
αi

)
u(t) = f(t, u(t)) for t ∈ [0, 1], u(0) = 0, (1)

where Dαm
w u(·) and D

αi
w u(·) are weak fractional Caputo derivatives of the

function u(·) : [0, 1]→ E of order αm and αi, i = 1, 2, . . . ,m− 1, respectively.
The function f(t, ·) : [0, 1]× E → E is weakly-weakly sequentially continuous

for every t ∈ [0, 1] and f(·, y(·)) is Pettis integrable for every weakly absolutely

continuous function y(·) : [0, 1] → E and E is a non-reflexive Banach space,
0 < α1 < α2 < . . . < αm < 1 and a1, a2 . . . am−1 are real numbers such that

a :=
∑m−1
i=1

|ai|
Γ(αm−αi+1)

< 1.

1. Introduction

In the past few years fractional differential equations have fascinated scientists
by virtue of its various applications in many branches of sciences e.g physics, chem-
istry, mathematical biology, fluid dynamics etc. The readers who are engrossed in
details of the subject, we refer to, [19, 31, 33]. The distinguishing features of frac-
tional differential equations in that it out line memory and transmitted properties
of numerous mathematical models. As a fact, that fractional order models are more
realistic and practical than the classical integer order models [21, 27, 28, 31, 32, 33].

The fractional differential equation bearing more than one differential operators
is known as multi-term fractional differential equation. Many researchers have in-
tensively studied these types of equations and discussed existence and uniqueness of
the solutions of multi-term fractional differential equations [1, 2, 8, 15, 17, 22, 23].
These equations have attracted the attentions of scientists, as they can model a
range of physical phenomena which cannot be governed by single term fractional
differential equations. Such types of equations can model propagation of mechanical
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waves in visco-elastic media [28], a non-markovian diffusion process with memory
[29], charge transport in amorphous semiconductors [39]. Presently Gejji in [16],
studied some aspects of multi-term fractional diffusion-wave equation.
The study of fractional differential equations in Banach spaces has been taken in
two different ways. The first one is to impose compactness conditions that only
guarantee the existence of solution. The other approach is to consider dissipative
type conditions which ensures the existence as well as uniqueness.
Different researchers have adopted various types of methods for the existence of so-
lution of multi-term fractional differential equations. In [8, 15, 17], the authors used
Kransnoselskii’s fixed point theorem and the technique associated with the mea-
sure of non-compactness. Using Riemann-Liouville fractional derivative the author
in [22], exhibited the existence of monotonic solution for the multi-term fractional
differential equations in Banach spaces. Moreover, no compactness conditions is
assumed on the non-linearity of the input function. In [25], the author studied
the existence of weak solution of the Cauchy problem in reflexive Banach spaces
equipped with weak topology, the author imposed weak-weak continuity assump-
tion on f . Similarly in [23], the author exhibited the existence of global monotonic
solution for the Cauchy problem, and assumed the function f to be Caratheodory
which has linear growth. Recently Agarwal et al. in [2], exhibited the existence
of solution of multi term fractional differential equations in non-reflexive Banach
spaces. Furthermore, the authors used the techniques associated with weak mea-
sure of non-compactness and fractional Pettis and fractional Pseudo derivatives.
Knowing the nature of the integral used the authors found that the solution is
fractional Pseudo differentiable function.

Many people have worked on the existence of weak solution of ordinary differen-
tial equations e.g see [10]. The weak measure of non-compactness was introduced
by De Blasi [18], and it was used by Cramer, Lakshmitantham and Mitchell [12]
and obtained an existence result for weak solutions of Cauchy problem in non-
reflexive Banach spaces. The authors imposed weak compactness type conditions
in term of the measure of weak non-compactness. Moreover, for existence and
uniqueness of solution, the authors imposed weak dissipative type condition. Using
these existence results and partial ordering induced by cones, existence of extremal
solutions and comparison results are also proved by the authors. Considering the
weak measure of non-compactness, some authors have imposed and generalized pre-
vious results. We refer to [10, 37]. Some researchers have exhibited the solutions of
fractional differential equations in Banach spaces using weak topology(see [3, 9]).
Inspired by the aforementioned work, the goal of the present research is to exhibit
weak solution, of multi-term fractional differential equation in non-reflexive Ba-
nach spaces under the hypothesis that the given input function is weakly-weakly
continuous. The main tools we use are Riemann-Pettis integral, fractional Caputo
derivative and weak measure of non-compactness. The solution exhibited in this
paper is fractional Caputo weakly differentiable function [13]. At the end of the
paper we will provide the conclusion of the results and particular cases of our work.
This paper is organized as follows: In Section 2, we provide preliminaries result to
facilitate the readers. In Section 3, we present main results about the existence of
solution and related results.
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2. Preliminaries

In order to make the manuscript a comprehensive note here we provide some
significant and main characteristics of Riemann-Pettis integrable, weakly-weakly
continuous functions, weak and strong derivatives and will point out some properties
of non-compactness measure. Furthermore, we present the notations, definitions
preliminary results about fractional calculus in the abstract spaces, using weak
derivative and Riemann Pettis integral. For more detail about this section, the
readers may see the monographs([37, 38]), we assume E to be Banach spaces with
E∗ be its topological dual and ||.|| be the norm on E. Addition 〈x, x∗〉 we mean
the action of the functional x∗ on the vector x ∈ E. Furthermore, we will denote
by Ew, the space E with the weak topology σ(E,E∗). Assume that the interval
T = [0, 1] endowed with the Lebesgue σ− algebra L(T ) and the Lebesgue measure
λ. According to the custom we will represent by, L1(T ), the space of all measurable
and Lebesgue integrable real functions defined on T , and by L∞(T ) the space of
all measurable and essential bounded real functions defined on T .

Definition 2.1. Let f : I × A ⊂ R × E → E. Then the function f(t, x) is said
to be weakly-weakly continuous at (t0, x0) if given ε > 0, x∗ ∈ E∗, there exists a
δ = δ(x∗, ε) and a weakly open set Ω = Ω(x∗, ε) containing x0 such that

| 〈x∗, f(t, x)− f(t0, x0)〉 | < ε

whenever, |t− t0| < δ and x ∈ Ω.

Definition 2.2. A linear space X is weakly sequentially complete if every weakly
Cauchy sequence is weakly convergent in X.

Definition 2.3. A function x : T → E is said to be absolutely continuous on T
(AC) if for every ε > 0 there exists a δ > 0 such that ‖

∑n
i=1[x(bk) − x(ak)]‖ < ε

for every finite disjoint family {(ak, bk) : 1 ≤ k ≤ n} of sub intervals of T such that∑n
i=1[bk − ak] < ε.

Definition 2.4. A function x(·) : T → E is said to be weakly absolutely continuous
(wAC) on T if for every x∗ ∈ E∗ the real valued function t → 〈x∗, x(t)〉 is AC on
T.

Proposition 2.5. ([34, Theorem 7.3.3]) If E is a weakly sequentially complete
space and x(·) : T → E is a function such that for every x∗ ∈ E∗, the real function
t 7→ 〈x∗, x(t)〉 is differentiable on T , then x(·) is weakly differentiable on T .

Definition 2.6. Let x(·) : T → E be a given function and α > 0. The fractional
Riemann-Liouville integral of order α > 0 of x(·) is defined by

Iαx(t) =

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds, t ∈ T, (2.1)

provided that the right side is point-wise defined on T . Also, the fractional Caputo
derivative of order α ∈ (0, 1] of x(·) is defined by

Dαx(t) := I1−αx′(t) =

∫ t

0

(t− s)−α

Γ(1− α)
x′(s)ds, t ∈ T, (2.2)

provided that the right side is point-wise defined on T .
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Definition 2.7. A vector-valued function x(·) : T → E is said to be Riemann
integrable (or R-integrable, for short) on T if for any partition {t0, ..., tn} of T
and any choice of points ξi ∈ [ti−1, ti], i = 1, ..., n, the sums

n∑
i=1

(ti − ti−1)x(ξi) (2.3)

converge strongly to some xT ∈ E provided max
1≤i≤n

|ti − ti−1| → 0 as n → ∞. The

element xT is called the Riemann-Graves integral of x(·) and it will be denoted by

(R)
∫ b

0
x(t)dt.

Definition 2.8. A function x(·) : T → E is said to be scalarly Riemann integrable
if for every x∗ ∈ E∗ the real function t 7→ 〈x∗, x(t)〉 is Riemann integrable on T .

Definition 2.9. A function x(·) : T → E is said to be Riemann-Pettis integrable
(RP-integrable) on T if x(·) is scalarly Riemann integrable and for every interval I
I ⊆ T , there exists an element τ ∈ E such that

〈x∗, τ〉 =

∫
I

〈x∗, x(s)〉 ds

for every x∗ ∈ E∗. The element τ is represented by (w)
∫
I
x(s)ds and it is called

the weak Riemann integral of x(·) on I.

Definition 2.10. Let x(·) : T → E be a weakly differentiable function such that
x(t) is Riemann-Pettis integrable function and α ∈ (0, 1). The fractional Bochner
integral of order α of x(·) is defined by

Iαwx(t) =

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds, t ∈ T, (2.4)

provided that the right side is point-wise defined on T .

Proposition 2.11. A weakly measurable function x(·) : T → E is Pettis integrable
on T and 〈x∗, x(·)〉 ∈ L∞(T ) for every x∗ ∈ E∗, if and only if the function t →
φ(t)x(t) is Pettis integrable on T for every φ ∈ L1(T ).

Proposition 2.12. [1] Let us denote by P∞(T,E) the space of all weakly measur-
able and Pettis integrable functions x(·) with the property that for every x∗ ∈ E∗
we have 〈x∗, x(t)〉 ∈ L∞(T ,E). Since for each t ∈ T the real valued function
s→ (t− s)α−1 is Lebesgue integrable on [0, t] for every α > 0 then, by Proposition
2.11, the fractional Pettis integral

Iαx(t) =

∫ t

0

(t− s)α−1

Γ(α)
ds, t ∈ T

exists for every function x(·) ∈ P∞(T,E) as a function from T into E.

Definition 2.13. A function f : X → Y defined on a Banach space X into Y is
called weakly-weakly sequentially continuous function if the image of each weakly
convergent sequence in X is weakly convergent in Y .

Definition 2.14. Assume a Banach space X and X∗ be the topological dual space
of X. If Cω(I,X) is space of all continuous mappings, f : I → (X,ω), where
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ω represents weak topology. Then the topology of weak uniform convergence is
determine by the basis,

Vn (g∗1 , g
∗
2 , g

∗
3 . . . , g

∗
n, ε) = {g ∈ Cω(I,X) : sup |〈g∗k, g(t)− u(t)〉| < ε, for k = 1, 2, 3, . . .n}

here u ∈ Cω(I,X), ε > 0, n ∈ N and g∗1 , g
∗
2 , g

∗
3 . . . , g

∗
n ∈ X∗.

In the succeeding discussion we shall recall some properties of the Riemann
integral. First, let us denote by P∞(T,E) the space of all weakly measurable and
Pettis integrable functions x(·) : T → E with the property that 〈x∗, x(·)〉 ∈ L∞(T )
for every x∗ ∈ E∗. Also, let C(T,E) denote the space of all strongly continuous
functions x(·) : T → E, endowed with the sup norm ||x(·)||c = supt∈T ‖x(t)‖.
Also, let Cw(T,E) be the space of all weakly continuous functions from T into Ew
endowed with the topology of weak uniform convergence.

Proposition 2.15. If x(·) : T → E is R-integrable on T , then

Iαx(t) = (P )

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds, t ∈ T, (2.5)

that is, Iαx(t) exists on T as a fractional Pettis integral.

Remark. If x(·) : T → E is strongly measurable and R-integrable on T , then the
fractional integral Iαx(t) exists a.e. on T as a fractional Bochner integral. This
result is a direct consequence of Theorem 15 of [20] and Theorem 2.4 from [24].

Proposition 2.16. Let α ∈ (0, 1) and let x(·) : T → E be a strongly differentiable
function on T . If the strong derivative x′(·) of x(·) is R-integrable on T , then

Dαx(t) = (B)

∫ t

0

(t− s)−α

Γ(1− α)
x′(s)ds, t ∈ T, (2.6)

that is, Dαx(t)exists a.e. on T as a fractional Bochner integral.

In the forthcoming discussion we will concentrate on the study of Riemann-Pettis
integrability and its applications to fractional calculus and fractional differential
equations.

Definition 2.17. A function x(·) : T → E is said to be Riemann-Pettis integrable
(RP -integrable) on T if x(·) is scalarly Riemann integrable and, for each interval
I ⊂ T , there exists an element zI ∈ E such that

〈x∗, zI〉 =

∫
I

〈x∗, x(s)〉 ds (2.7)

for every x∗ ∈ E∗. The element zI will be denoted by (w)
∫
I
x(s)ds and it is called

the weak Riemann integral of x(·) on I.

Also, a RP -integrable function is sometime called a weakly Riemann integrable
function. In fact, RP -integrability on T is equivalent to the weak convergence of
the Riemann sums (2.3). It is not difficult to show that every R-integrable function
is RP -integrable, and every RP -integrable function is Pettis integrable (see [20]).
Alexiewicz and Orlicz [5] give an example which shows that neither RP -integrability
nor weakly continuity imply R-integrability. We shall denote by RP (T,E) the set
of all RP -integrable functions from T into E.
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Proposition 2.18. (Krein [26], Alexiewicz and Orlicz [5]). Every weakly continu-
ous function from T into E is RP -integrable on T , that is, Cw(T,E) ⊂ RP (T,E).

The following properties are the consequences of definitions and properties of
weak differentiability [4].“

Proposition 2.19. If x(·) : T → E is weakly continuous on T , then the function
y(·) : T → E, given by

y(t) = (w)

∫ t

0

x(s)ds, t ∈ T, (2.8)

is weakly differentiable on T and y′w(t) = x(t) for every t ∈ T .

Proposition 2.20. If x(·) : T → E is weakly differentiable on T and x′w(·) is
weakly continuous on T , then

x(t) = x(0) + (w)

∫ t

0

x′w(s)ds, t ∈ T. (2.9)

Proposition 2.21. If x(·) : T → E is RP -integrable on T , then

Iαwx(t) :=

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds, t ∈ T, (2.10)

exists on T as a fractional Pettis integral. Moreover, Iαw is a linear operator from
RP (T,E) into P∞(T,E), and for α > 0, β > 0 we have

IαwI
β
wx(t) = Iα+β

w x(t), t ∈ T. (2.11)

Proposition 2.22. Let α ∈ (0, 1) and let x(·) : T → E be a weakly differentiable
function on T . If the weak derivative x′w(·) of x(·) is RP -integrable on T , then

Dα
wx(t) := I1−α

w x′(t) =

∫ t

0

(t− s)−α

Γ(1− α)
x′w(s)ds, t ∈ T, (2.12)

exists a.e. on T as a fractional Bochner integral (and so as a fractional Pettis
integral).

Clearly, if x(·) : T → E is R-integrable on T , then Dα
wx(t) exists on T as a

fractional Bochner integral and Dα
wx(t) = Dαx(t) for t ∈ T .

Definition 2.23. Two weakly measurable functions x(·) : T → E and y(·) : T → E
are said to be weakly equivalent if for every x∗ ∈ E∗ we have that 〈x∗, x(t)〉 =
〈x∗, y(t)〉 for a.e t ∈ T . If two weakly measurable functions x(·) : T → E and
y(·) : T → E are weakly equivalent on T , then we will write x(·) ' y(·) for t ∈ T.

Lemma 2.24. If x(·) : T → E is weakly differentiable a.e. on T and x′w(·) is
RP -integrable on T , then the function

x1−α(t) :=

∫ t

0

(t− s)−α

Γ(1− α)
x(s)ds, t ∈ T,

is wAC and weakly differentiable a.e. on T . Moreover, (x1−α)
′
w (·) is RP -integrable

and

(x1−α)
′
w (t) =

t−α

Γ(1− α)
y(0) + I1−α

w x′w(t) a.e. on T. (2.13)
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Remark. Relation (2.13) can be written as

Dα
wx(t) = (x1−α)

′
w (t)− t−α

Γ(1− α)
y(0) a.e. on T. (2.14)

In this case (x1−α)
′
w (t) will be denoted by RLDα

wx(t) and it is called the weak
Riemann-Liouville derivative of x(·). The formula (2.14) suggests us that we can
extend the definition of the weak Caputo fractional derivative for RP -integrable
functions. Therefore, if x(·) ∈ RP (T,E), then its weak Caputo derivative is defined
by (2.14). It follows that the weak Caputo fractional derivatives Dα

wx(t) are also de-
fined for functions x(·) for which the weak Riemann-Liouville fractional derivatives
RLDα

wx(t) exist.

Remark. If x(·) is not weakly differentiable, then x1−α(·) will not be weakly dif-
ferentiable.

Remark. If x(·) : T → E is weakly differentiable a.e. on T and x′w(·) is RP -
integrable, then

xα(t) :=

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds, t ∈ T,

is wAC and weakly differentiable a.e. on T and

(xα)′w(t) =
tα−1

Γ(α)
x(0) + Iαwx

′
w(t) a.e. on T.

Also, if E is a weakly sequentially complete space and x(·) : T → E is weakly
differentiable, then the function xα(·) is AC on T .

Corollary 2.25. Let E be a weakly sequentially complete space. If y(·) : T → E is
weakly differentiable, then the function y1−α(·) is AC on T .

Proposition 2.26. If x(·) : T → E is weakly differentiable a.e. on T and x′w(·) is
RP -integrable on T and α, β ∈ (0, 1), then

(a) IαwD
α
wx(t) = x(t)− x(0) on T ;

(b) Dα
wI

α
wx(t) = x(t) on T .

Theorem 2.27. [4] If y(·) ∈ RP (T,E), then the Abel integral equation∫ t

0

(t− s)α−1

Γ(α)
x(s)ds = y(t), t ∈ T = T , (2.15)

has a solution in x(·) ∈ RP (T,E) if and only if the function y1−α(·) has the fol-
lowing properties:

(a) y1−α(·) is wAC on T ,
(b)y1−α(·) is weakly differentiable a.e. on T and

x(t) = (y1−α)′w(t), for a.e. t ∈ T, (2.16)

(c) y1−α(0) = 0.

Lemma 2.28. Let y(·) : T → E be a weakly differentiable function such that y′w is
Riemann-Pettis integrable and 0 ≤ α ≤ β ≤ 1. Then,
(a) IαDβ

wy(t) = Dβ−αy(t) on T,
(b) If y(0) = 0, then Dβ

wI
αy(t) = Dβ−αy(t) and IβDα

wy(t) = Iβ−αy(t) on T”.
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Theorem 2.29. [30] Let E be a metrizable locally convex topological vector space
and let K be a closed convex subset of E, let Q be a weakly sequentially continuous
map of K into itself. If for some y ∈ K the implication

V = connv(Q(V ) ∪ y)⇒ is relatively weakly compact,

holds for every subset V of K, then Q has a fixed point.

Let us denote by Pwk(E) the set of all weakly compact subsets of E. The weak
measure of non-compactness is the set function β : Pwk(E)→ R+ defined by

β(A) = inf{r > 0; there exist K ∈ Pwk(E) such A ⊂ K + rB1},

where B1 is the closed unite ball in E. The properties of weak non-compactness
measure are analogous to the properties of measure of non-compactness. If A, B ∈
Pwk(E),
(N1) β(B) ≥ β(A); whenever B ⊇ A
(N2) β(A) = β(clw(A)), where clw(A) denotes the weak closure of A;
(N3) β(A) = 0 if and only if clw is weakly compact;
(N4) β(A ∪B) = max{β(A), β(B)};
(N5) β(A) = β(conv(A));
(N6)) β(A) + β(B) ≥ β(A+B);
(N7) β(x+A) = β(A), for all x ∈ E;
(N8) β(κA) = |κ|β(A), for all κ ∈ R;
(N9) β(∪0≤r≤r0rA) = r0β(A)
(N10) 2diam(A) ≥ β(A)

Lemma 2.30. [7, 12] Let Y ⊂ C(T,E) be bounded and equi-continuous, then

(i) the function t→ β(Y(t)) is continuous on T,

(ii)βc(Y ) = sup
t∈T

β(Y (t)) = β(Y (t)),

where βc(·) denotes the weak measure of non-compactness in C(T,E) and Y (t) =
{u(t); u ∈ Y }, t ∈ T.

3. Main Results

Assume the following multi-term fractional differential equation(
Dαm
w −

m−1∑
i=1

aiD
αi

)
u(t) = f(t, u(t)) for t ∈ [0, 1], u(0) = 0, (3.1)

where Dαm
w u(·) and Dαi

w u(·) are fractional Caputo weak derivatives of the function
u(·) : [0, 1] → E of order αm and αi, i = 1, 2, . . . ,m − 1, respectively, E is a non-
reflexive Banach space, 0 < α1 < α2 < α3 . . . < αm < 1 and a1, a2, a3, . . . am−1 are

real numbers such that a :=
∑m−1
i=1

|ai|
Γ(αm−αi+1) < 1. Along with Cauchy problem

(3.1), consider the following integral equation

u(t) =

m−1∑
i=1

(P )

∫ t

0

ai(t− s)(αm−αi−1)

Γ(αm − αi)
u(s)ds+ (P )

∫ t

0

(t− s)αm−1

Γ(αm)
f(s, u(s))ds, t ∈ T = [0, 1],

(3.2)
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where the integral is in the sense of Pettis.

Definition 3.1. A continuous function y(·) : T → E is said to be weak solution of
(3.1) if,
(i) y(·) is weakly differentiable, y′w(·) is RP -integrable,
(ii) y(·) has Caputo fractional weak-derivative of order αi ∈ (0, 1), i = 1, 2, 3, . . . ,m,

(iii) (Dαm −
∑m−1
i=1 )aiD

αi) ' f(t, y(t)), for all t ∈ T,
(iv) y(0) = 0.

Lemma 3.2. Assume f(·, ·) : T ×E → E such that f(·, u(·)) is weakly continuous
for every continuous function u : T → E. Then u(·) is weak solution of (3.1), if
and only if it satisfy the integral equation (3.2).

Proof. If a continuous function y(·) : T → E is a weak solution of (3.1), then from

lemma (2.28) it follows that y(t) =
∑m−1
i=1 (Iα−αi

w u(t)) + Iαwf(t, y(t))on T; that is,
y(·) satisfies the integral equation (3.2). Conversely suppose that a continuous
function y(·) : T → E satisfies the integral equation (3.2). The weakly continuous
function z(·) := f(·, y(·)) satisfies the Abel equation,∫ t

0

(t− s)αm−1

Γ(αm)
z(s)ds = v(t), t ∈ T

, from (2.27) it follows that v1−αm(·) is weakly differentiable a.e on T and

z(t) ' dp
dt
v1−αm

(t), for t ∈ T.

Since y(·) is continuous on T and f(·, y(·)) is weakly continuous also satisfies (h3),
we have

lim
t→0+

Iαy(t) = lim
t→0+

Iαf(t, y(t)) = 0 for α ∈ (0, 1)

now taking limit t → 0+ of (3.2), we obtain y(0) = 0 and consequently v(0) = 0.
Since v(0) = 0, by remark (2) we have

z(t) ' dp
dt
v1−αm

= Dαm
w v(t); t ∈ T.

Using Lemma (2.28) we have

Dαm
w v(t) = Dαm

w y(t)−
m−1∑
i=1

aiD
αm
w Iαm−αiy(t)

= Dαm
w y(t)−

m−1∑
i=1

aiD
αi
w y(t)

we obtain (
Dαm
w −

m−1∑
i=1

aiD
αi

)
y(t) ' f(t, y(t)) for t ∈ [0, 1].

Hence the continuous function y(·) satisfy the conditions of definition (3.1) and
thus y(·) is a solution of (3.1). �
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Theorem 3.3. Let r > 0. Assume f(·, ·) : T × E → E be a function such that:
(h1) f(t, ·) is weakly-weakly continuous for every t ∈ T ;
(h2) g : [0,∞)→ [0,∞) is a non-decreasing continuous function such that g(0) = 0
and g(t) < t for all t > 0;
(h3) ||f(t, u)|| ≤M for all (t, u) ∈ T × E
(h4) for all A ⊆ E we have

β(f(T ×A)) ≤ g(β(A)),

where g(·) is a Gripenberg function. Then (3.2) admits a solution u(·) on an interval
[0, a0] with

a0 < min

{
1,

[
r(1− a)Γ(αm + 1)

M

]1/αm
}
.

Proof: Suppose the nonlinear operator, Q (·) : Cw(T0, E) → Cw(T0, E) defined
as

(Qu)(t) =

m−1∑
i=1

(P )

∫ t

0

ai(t− s)αm−αi−1

Γ(αm − αi)
u(s)ds+(P )

∫ t

0

(t− s)αm−1

Γ(αm)
f(s, u(s))ds, ,

for all t ∈ [0, a0] = T0. If y(·) ∈ Cw(T0, E), then by remark 2 the operator Q
makes sense. To show that Q is well defined, let t, s ∈ T0 with t > s. With-
out loss of generality, assume that (Qy)(t) − (Qy)(s) 6= 0. Then by the Hahn-
Banach theorem, there exists a y∗ ∈ E∗ with ‖y∗‖ = 1 and ‖(Qy)(t)− (Qy)(s)‖ =
|〈y∗, (Qy)(t)− (Qy)(s)〉|. Then

‖(Qy)(t)− (Qy)(s)‖ = |〈y∗, (Qy)(t)− (Qy)(s)〉| ≤

≤
m−1∑
i=1

|ai|
Γ(αm − αi)

∫ s

0

[
(s− τ)αm−αi−1 − (t− τ)αm−αi−1

]
|〈y∗, u(τ)〉| dτ

+

∫ t

s

(t− τ)αm−αi−1 |〈y∗, f(τ, u(τ))〉| dτ +

+
1

Γ(αm)

∫ s

0

[
(s− τ)αm−1 − (t− τ)αm−1

]
|〈y∗, u(τ)〉| dτ (3.3)

+

∫ t

s

(t− τ)αm−1 |〈y∗, f(τ, u(τ))〉| dτ

≤ 2

[
m−1∑
i=1

r|ai|
Γ(αm − αi + 1)

+
M

Γ(αm + 1)

]
(t− s)αm .

so Q maps Cw(T0, E) into itself. Let r > 0 and let B̃ be the convex, closed and
equi-continues set defined by

B̃ = {y(·) ∈ Cw(T0, E); ‖y(·)‖c ≤ r, ‖y(t)− y(s)‖ ≤

≤ 2

[
m−1∑
i=1

r|ai|
Γ(αm − αi + 1)

+
M

Γ(αm + 1)

]
(t− s)αm for all t, s ∈ T0}.

We will show that Q maps B̃ into itself and Q restricted to the set B̃ is continuous.

To show that Q : B̃ → B̃, let y(·) ∈ B̃ and t ∈ T0. Again, without loss of generality,
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assume that (Qy)(t) 6= 0. By the Hahn-Banach theorem, there exists a y∗ ∈ E∗
with ‖y∗‖ = 1 and ‖(Qy)(t)‖ = |〈y∗, (Qy)(t)〉|. Then by (h3), we have

‖(Qu)(t)‖ = |〈y∗, (Qy)(t)〉| ≤

≤
m−1∑
i=1

|ai|
Γ(αm − αi)

∫ t

0

(t− s)αm−αi−1 |〈y∗, u(τ)〉| ds+

1

Γ(αm)

∫ t

0

(t− s)αm−1 |〈y∗, f(τ, u(τ))〉| ds ≤

≤
m−1∑
i=1

r|ai|
Γ(αm − αi + 1)

+
Mtαm

Γ(αm + 1)
≤ ra+ (1− a)r = r

and using (3.3) it follows that Q maps B̃ into B̃. Next, we show that Q restricted

to B̃ is a continuous operator. Let fix y(·) ∈ B̃, ε > 0. Furthermore, we fix y∗ ∈ E∗

such that ||y∗|| ≤ 1. We will choose a0 such that, a0 <
ε(αm−αi)

2r+(αm−αi)
. As f(·, ·) is

weakly-weakly continuous so we have by Krasnoselskii type lemma (see [35]), that
there exists a weak neighborhood W of 0 in E such that |〈y∗, f(s, y(s)− f(s), z(s))| <
Γ(1 + αm) for s ∈ T0 and z(·) ∈ B̃ with y(s)− z(s) ∈W . Hence we have,

|〈y∗, (Qy)(t)− (Qz(t))〉| ≤

≤

∣∣∣∣∣
〈
y∗,

m−1∑
i=1

∫ t

0

ai(t− s)αm−αi−1

Γ(αm − αi)
[y(s)− z(s)]ds

〉∣∣∣∣∣+

+

∣∣∣∣∣
〈
y∗,

m−1∑
i=1

∫ t

0

ai(t− s)αm−αi−1

Γ(αm − αi)
[f(s, y(s))− f(s, z(s))]ds

〉∣∣∣∣∣
≤

(
2r + (αm − αi)

(αm − αi)

)
aαm

0

≤ ε. (3.4)

Hence we proved that Q restricted to B̃ is a continuous operator . Now Suppose

that V ⊂ B̃ such that V = co(Q(V ) ∪ {y(·)}) for some y(·) ∈ B̃. Let t ∈ T0 and

ε > 0. If we choose η > 0 such that η <
(

εΓ(αm+1)
M+rΓ(αm+1)

)1/αm

and

m−1∑
i=1

ai
Γ(αm − αi)

∫ t

t−η
(t−s)αm−αi−1u(s)ds+

1

Γ(αm)

∫ t

t−η
(t−s)αm−1f(s, u(s))ds 6= 0
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then, by the Hahn-Banach theorem, there exists a y∗ ∈ E∗ with ‖y∗‖ = 1 and∥∥∥∥∥
m−1∑
i=1

ai
Γ(αm − αi)

∫ t

t−η
(t− s)αm−αi−1u(s)ds+

1

Γ(αm)

∫ t

t−η
(t− s)αm−1f(s, u(s))ds

∥∥∥∥∥
=

∣∣∣∣∣
〈
y∗,

m−1∑
i=1

ai
Γ(αm − αi)

∫ t

t−η
(t− s)αm−αi−1u(s)ds+

1

Γ(αm)

∫ t

t−η
(t− s)αm−1f(s, u(s))ds

〉∣∣∣∣∣
≤

m−1∑
i=1

|ai|
Γ(αm − αi)

∫ t

t−η
(t− s)αm−αi−1 |〈y∗, u(τ)〉| ds+

+
1

Γ(αm)

∫ t

t−η
(t− s)αm−1 |〈y∗, f(τ, u(τ))〉| ds

≤
m−1∑
i=1

r|ai|ηαm−αi

Γ(αm − αi + 1)
+

Mηαm

Γ(αm + 1)
≤ rηαm +

Mηαm

Γ(αm + 1)

≤ M + rΓ(αm + 1)

Γ(αm + 1)
ηαm < ε.

and thus using property (x) measure of the non-compactness we infer

β

({
m−1∑
i=1

ai
Γ(αm − αi)

∫ t

t−η
(t− s)αm−αi−1u(s)ds+ (3.5)

1

Γ(αm)

∫ t

t−η
(t− s)αm−1f(s, u(s))ds, u ∈ V

})
≤ 2ε.

Since by Lemma 2.30 the function t → v(t) := β(V (t)) is continuous on [0, t − η]
it follows that s → (t − s)αm−1g(v(s)) is continuous on [0, t − η]. Hence, for every
ε > 0 there exists δ > 0 such that∥∥(t− τ)αm−1g(v(τ))− (t− s)αm−1g(v(s))

∥∥ < ε

2

and

‖g(v(ξ))− g(v(τ))‖ < ε

2ηαm−1
.

If |τ − s| < δ and |τ − ξ| < δ with τ, s, ξ ∈ [0, t− η], then it follows that

|(t− τ)αm−1g(v(ξ))− (t− s)αm−1g(v(s))| ≤ |(t− τ)αm−1g(v(τ))− (t− s)αm−1g(v(s))|
+ (t− τ)αm−1|g(v(ξ))− g(v(τ))|
< ε,

that is

|(t− τ)αm−1g(v(ξ))− (t− s)αm−1g(v(s))| < ε, (3.6)

for all τ , s, ξ ∈ [0, t − η] with |τ − s| < δ and |τ − ξ| < δ. Consider the following
partition of the interval [0, t− η] into n parts 0 = t0 < t1 . . . < tn = t− η such that
ti − ti−1 < δ (i = 1, 2, . . . , n). By Lemma 2.30 for each i there exists si ∈ [ti−1, ti]
such that β(V ([ti−1, ti])) = v(si), i = 1, 2, . . . , n. Then we have by([36], Theorem
2.2 and [6, 11])

m−1∑
i=1

ai
Γ(αm − αi)

∫ t−η

0

(t−s)αm−αi−1V (s)ds+
1

Γ(αm)

∫ t−η

0

(t−s)αm−1f(s, V (s))ds ⊂
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⊂
m−1∑
i=1

ai
Γ(αm − αi)

∫ t

t−η
(t−s)αm−αi−1V (s)ds+

n∑
j=1

1

Γ(αm)

∫ ti

ti−1

(t−s)αm−1f(s, V (s))ds ⊂

⊂
m−1∑
i=1

ai
Γ(αm − αi)

∫ t

t−η
(t−s)αm−αi−1V (s)ds+

+
1

Γ(αm)

n∑
i=1

(ti−ti−1)conv{(t−s)αm−1f(s, u(s)); s ∈ [ti−1, ti], u ∈ V },

and so

β

(
m−1∑
i=1

ai
Γ(αm − αi)

∫ t−η

0

(t− s)αm−αi−1V (s)ds+
1

Γ(αm)

∫ t−η

0

(t− s)αm−1f(s, V (s))ds

)
≤

≤ β

(
m−1∑
i=1

ai
Γ(αm − αi)

∫ t−η

0

(t− s)αm−αi−1V (s)ds

)
+

+
1

Γ(αm)

n∑
i=1

(ti−ti−1)β
(
conv{(t− s)αm−1f(s, u(s)); s ∈ [ti−1, ti], u ∈ V }

)

= β

(
m−1∑
i=1

ai
Γ(αm − αi)

∫ t−η

0

(t− s)αm−αi−1V (s)ds

)
+

+
1

Γ(αm)

n∑
i=1

(ti − ti−1)β
(
{(t− s)αm−1f(s, u(s)); s ∈ [ti−1, ti], u ∈ V }

)
≤

≤ β

(
m−1∑
i=1

ai
Γ(αm − αi)

∫ t−η

0

(t− s)αm−αi−1V (s)ds

)
+

+
1

Γ(αm)

n∑
i=1

(ti − ti−1)(t− ti)αm−1β (f([0, a0]× V [ti−1, ti]))

≤ β

(
m−1∑
i=1

ai
Γ(αm − αi)

∫ t−η

0

(t− s)αm−αi−1V (s)ds

)
+

+
1

Γ(αm)

n∑
i=1

(ti − ti−1)(t− ti)αm−1g(V [ti−1, ti]) ≤

≤ β

(
m−1∑
i=1

ai
Γ(αm − αi)

∫ t−η

0

(t− s)αm−αi−1V (s)ds

)
+

+
1

Γ(αm)

n∑
i=1

(ti − ti−1)(t− ti)αm−1g(v(si)).

Using (3.6) we have that

|(t− ti)αm−1g(v(si))− (t− s)αm−1g(v(s))| < ε.
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This implies that

1

Γ(αm)

n∑
j=1

(ti − ti−1)(t− ti)αm−1g(v(si)) (3.7)

≤ 1

Γ(αm)

∫ t−η

0

(t− s)αm−1g(v(s))ds+ ε(t− η)/Γ(αm).

By using (3.5) we claim that

β

(
m−1∑
i=1

ai
Γ(αm − αi)

∫ t

t−η
(t− s)αm−αi−1V (s)ds

)
≤ 2ε. (3.8)

Because if we let that

A(t) =
1

Γ(αm)

∫ t

t−η
(t− s)αm−1f(s, V (s))ds,

B(t) =

m−1∑
i=1

ai
Γ(αm − αi)

∫ t

t−η
(t− s)αm−αi−1V (s)ds,

then a+B(t) ⊂ A(t)+B(t) for a ∈ A(t), implies that β(B(t)) ≤ β(A(t)+B(t)) < 2ε.
From relations (3.7) and (3.8) we obtain

β

(
m−1∑
i=1

ai
Γ(αm − αi)

∫ t−η

0

(t− s)αm−αi−1V (s)ds+
1

Γ(αm)

∫ t−η

0

(t− s)αm−1f(s, V (s))ds

)
≤

(3.9)

≤ 2ε+
1

Γ(αm)

∫ t−η

0

(t−s)αm−1g(V (s))ds+ε(t−η)/Γ(αm).

Since

(QV )(t) ⊂
m−1∑
i=1

ai
Γ(αm − αi)

∫ t−η

0

(t− s)αm−αi−1V (s)ds+

m−1∑
i=1

ai
Γ(αm − αi)

∫ t

t−η
(t− s)αm−αi−1V (s)ds+

+
1

Γ(αm)

∫ t−η

0

(t− s)αm−1f(s, V (s))ds+
1

Γ(αm)

∫ t

t−η
(t− s)αm−1f(s, V (s))ds,

then by virtue of (3.5) and (3.9) we have

β((QV )(t)) ≤ 1

Γ(αm)

∫ t−η

0

(t− s)αm−1g(v(s))ds+ ε(t− η)/Γ(αm) + 4ε

≤ 1

Γ(αm)

∫ t

0

(t− s)αm−1g(v(s))ds+ ε((t+ 4)/Γ(αm)).

As the last inequality is true for every ε > 0, we infer

β((QV )(t)) ≤ 1

Γ(αm)

∫ t

0

(t− s)αm−1g(v(s))ds, t ∈ [0, a0],

Because V = co(Q(V ) ∪ {y(·)}) then

β(V (t)) = β (co(Q(V (t)) ∪ {y(t)})) ≤ β((QV (t)))
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and thus

v(t) ≤ 1

Γ(αm)

∫ t

0

(t− s)αm−1g(v(s))ds for t ∈ T0.

Since g(·) is a Gripenberg function, it follows that v(t) = 0 for t ∈ T0. Since V as

a subset of B̃ is equicontinuous, by Lemma 2.30 we infer

βc(V (T0)) = sup
t∈T0

β(V (t)) = 0.

Thus, by Arzelá-Ascoli’s theorem we obtain that V is weakly relatively compact in
C(T0, E). Using Theorem 2.29 there exists a fixed point of the operator Q which is
a solution of (3.2). Therefore, by Lemma 3.2 we have a solution of (3.1).
Concluding Remarks:
Assuming the Cauchy problem (3.1) we exhibited the existence of weak solu-
tion of multi-term fractional differential equations in a non-reflexive Banach space
equipped with the weak topology. Which turn out to be mostly parallel to those
of the single term prototype. Furthermore, we used fractional Riemann-Pettis in-
tegral, weak fractional Caputo derivative and weak measure of non-compactness.

Remark. If α1 = α2 . . . αm−1 = 0 and αm = 1 and put Dy(·) = y′, then from
theorem 2.27 we obtain the following generalization of some known results ([12, 14]).
Moreover, if α1 = α2 . . . αm−1 = 0 and αm = α, where 0 < α < 1 one can get the
special case [4].
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